Informatie voor professionals in voedsel en groen

Informatie voor professionals in voedsel en groen

  • externe gebruiker (Let opwarning)
  • Log in as
  • Over Groenekennis


    Groenekennis - Informatie voor professionals in voedsel en groen

    Groenekennis bevat artikelen uit vaktijdschriften, rapporten, video’s, presentaties, posters en websites op het gebied van landbouw, visserij, groene ruimte en voeding. Groenekennis wordt dagelijks bijgewerkt en bevat ongeveer 500.000 bronnen.

    Groenekennis is de globale view over diverse deelbestanden. Groenekennis is gevuld met alle informatie uit Groen Kennisnet, de Hydrotheek, Tuinpad, IB archief, ARTIK, bioKennis, Kennisbank Plantaardige bronnen, Kennisbank Zeldzame landbouwhuisdieren en afgesloten documentatiebestanden zoals Land Bodem Water en Consumenten- en huishoudstudies.

    Groen Kennisnet is een zeer belangrijk onderdeel van Groenekennis. De doelstelling van Groen Kennisnet is kennis delen op het gebied van Voedsel en Groen te bevorderen en te faciliteren voor een breed publiek.

    Bronnen in Groenekennis kunnen direct opgevraagd worden via een geavanceerde zoekmachine met een 'google-achtige' interface. Met filters kan ingezoomd worden op diverse aspecten, zoals Trefwoord, Collectie, Jaar en Auteur. Bovendien biedt Groenekennis gebruikers de mogelijkheid om via de E-mail geattendeerd te worden op aanvullingen in specifieke vakgebieden.
    De Tijdschriftenlijst biedt een overzicht van tijdschriften waaruit de artikelen voor Groenekennis worden geselecteerd. Door te klikken op een titel krijgt u alle artikelen uit dat tijdschrift in de Groenekennis database getoond.
    Zoeken op kaart biedt een geografische ingang op de beschikbare publicaties over de binnen dit bestand onderscheiden gebieden.

    Groenekennis is onderdeel van het bibliotheeksysteem van WUR. Praktijkgerichte publicaties en rapporten van WUR komen daardoor automatisch beschikbaar. Daarnaast wordt de database doorlopend gevuld met voor het groen onderwijs bruikbare bronnen en artikelen, video’s en websites. Het percentage online is de laatste jaren gegroeid tot tweederde van de totale aanwas per jaar. Dit percentage groeit nog steeds.

    Over
Record nummer 2078702
Titel Improving obstacle awareness for robotic harvesting of sweet-pepper
toon extra info.
C. Wouter Bac
Auteur(s) Bac, C.W.
Uitgever Wageningen : Wageningen University
Jaar van uitgave 2015
Pagina's 186 pages figures, diagrams
Pagina's 1 online resource (PDF, 186 pages) figures, diagrams
Annotatie(s) PhD thesis Wageningen University for the degree of doctor in the year 2015  toon alle annotatie(s)
Includes bibliographic references. - With summaries in English and Dutch
Author's name on cover: Cornelis Wouter Bac
ISBN 9789462571808
Tutor(s) Henten, Prof. dr. E.J. van ; Hemming, Dr. J.
Promotiedatum 2015-01-09
Proefschrift nr. 5954
Samenvatting door auteur toon abstract

Abstract

Obstacles are densely spaced in a sweet-pepper crop and they limit the free workspace for a robot that can detach the fruit from the plant. Previous harvesting robots mostly attempted to detach a fruit without using any information of obstacles, thereby reducing the harvest success and damaging the fruit and plant. The hypothesis evaluated in this research is that a robot capable of distinguishing between hard and soft obstacles, and capable of employing this knowledge, improves harvest success and decreases plant damages during harvesting. In line with this hypothesis, the main objective was to develop a sweet-pepper harvesting robot capable of distinguishing between hard and soft obstacles, and of employing this knowledge.

As a start, the thesis describes the crop environment of a harvesting robot, reviews all harvesting robots developed for high-value crops, and defines challenges for future development. Based on insights from this review, we explored the ability to distinguish five plant parts. A multi-spectral imaging set-up and artificial lighting were developed and pixels were classified using a decision tree classifier and a feature selection algorithm. Classification performance was found insufficient and therefore post-processing methods were employed to enhance performance and detect plant parts on a blob basis. Still, performance was found insufficient and a focussed study was conducted on stem localization. The imaging set-up and algorithm developed for stem localization were used to provide real stem locations for motion planning simulations. To address the motion planning problem, we developed a new method of selecting the grasp pose of the end-effector. The new method and the stem localization algorithm were both integrated in the harvesting robot, and we tested their contribution to performance. This research is the first to report a performance evaluation of a sweet-pepper harvesting robot tested under greenhouse conditions. The robot was able to harvest sweet-peppers in a commercial greenhouse, but at limited success rates: harvest success was 6% when the Fin Ray end-effector was mounted, and 2% when the Lip-type end-effector was mounted. After simplifying the crop, by removal of fruit clusters and occluding leaves, harvest success was 26% (Fin Ray) and 33% (Lip-Type). Hence, these properties of the crop partly caused the low performance. The cycle time per fruit was commonly 94 s, i.e. a factor of 16 too long compared with an economically feasible time of 6 s. Several recommendations were made to bridge the gap in performance. Additionally, the robot’s novel functionality of stem-dependant determination of the grasp pose was evaluated to respond to the hypothesis.

Testing the effect of enabling stem-dependent determination of the grasp pose revealed that, in a simplified crop, grasp success increased from 41% to 61% for the Lip-type end-effector, and stem damage decreased from 19% to 13% for the Fin Ray end-effector. Although these effects seem large, they were not statistically significant and therefore resulted in rejection of the hypothesis. To re-evaluate significance of the effects, more samples should be tested in future work.

In conclusion, this PhD research improves the obstacle awareness for robotic harvesting of sweet-pepper by the robot’s capability of perceiving and employing hard obstacles (plant stems), whereas previous harvesting robots either lumped all obstacles in one obstacle class, or did not perceive obstacles. This capability may serve as useful generic functionality for future robots.

 

Online full text
Op papier Haal het document, vind aanverwante informatie of gebruik andere SFX-diensten
Trefwoorden (cab) robots / oogsten / paprika's / obstructie / detectie / spectraalanalyse / beeldverwerking / simulatie / kassen
Rubrieken Kastechniek / Mechanisatie
Publicatie type Proefschrift
Taal Engels
Reacties
Er zijn nog geen reacties. U kunt de eerste schrijven!
Schrijf een reactie
 

To support researchers to publish their research Open Access, deals have been negotiated with various publishers. Depending on the deal, a discount is provided for the author on the Article Processing Charges that need to be paid by the author to publish an article Open Access. A discount of 100% means that (after approval) the author does not have to pay Article Processing Charges.

For the approval of an Open Access deal for an article, the corresponding author of this article must be affiliated with Wageningen University & Research.

U moet eerst inloggen om gebruik te maken van deze service. Login als Wageningen University & Research user of guest user rechtsboven op deze pagina.