Informatie voor professionals in voedsel en groen

Informatie voor professionals in voedsel en groen

  • externe gebruiker (Let opwarning)
  • Log in as
  • Over Groenekennis


    Groenekennis - Informatie voor professionals in voedsel en groen

    Groenekennis bevat artikelen uit vaktijdschriften, rapporten, video’s, presentaties, posters en websites op het gebied van landbouw, visserij, groene ruimte en voeding. Groenekennis wordt dagelijks bijgewerkt en bevat ongeveer 500.000 bronnen.

    Groenekennis is de globale view over diverse deelbestanden. Groenekennis is gevuld met alle informatie uit Groen Kennisnet, de Hydrotheek, Tuinpad, IB archief, ARTIK, bioKennis, Kennisbank Plantaardige bronnen, Kennisbank Zeldzame landbouwhuisdieren en afgesloten documentatiebestanden zoals Land Bodem Water en Consumenten- en huishoudstudies.

    Groen Kennisnet is een zeer belangrijk onderdeel van Groenekennis. De doelstelling van Groen Kennisnet is kennis delen op het gebied van Voedsel en Groen te bevorderen en te faciliteren voor een breed publiek.

    Bronnen in Groenekennis kunnen direct opgevraagd worden via een geavanceerde zoekmachine met een 'google-achtige' interface. Met filters kan ingezoomd worden op diverse aspecten, zoals Trefwoord, Collectie, Jaar en Auteur. Bovendien biedt Groenekennis gebruikers de mogelijkheid om via de E-mail geattendeerd te worden op aanvullingen in specifieke vakgebieden.
    De Tijdschriftenlijst biedt een overzicht van tijdschriften waaruit de artikelen voor Groenekennis worden geselecteerd. Door te klikken op een titel krijgt u alle artikelen uit dat tijdschrift in de Groenekennis database getoond.
    Zoeken op kaart biedt een geografische ingang op de beschikbare publicaties over de binnen dit bestand onderscheiden gebieden.

    Groenekennis is onderdeel van het bibliotheeksysteem van WUR. Praktijkgerichte publicaties en rapporten van WUR komen daardoor automatisch beschikbaar. Daarnaast wordt de database doorlopend gevuld met voor het groen onderwijs bruikbare bronnen en artikelen, video’s en websites. Het percentage online is de laatste jaren gegroeid tot tweederde van de totale aanwas per jaar. Dit percentage groeit nog steeds.

    Over
Record nummer 2238828
Titel From plant to plastic : metabolic engineering of plant monoterpenes for biobased commodity chemicals
toon extra info.
Esmer Jongedijk
Auteur(s) Jongedijk, Esmer (dissertant)
Uitgever Wageningen : Wageningen University
Jaar van uitgave 2018
Pagina's 172 pages figures, diagrams
Pagina's 1 online resource (PDF, 172 pages) figures, diagrams
Annotatie(s) Includes bibliographical references. - With summaries in Dutch and English
ISBN 9789463432573; 9463432574
Tutor(s) Bouwmeester, Prof. dr. H. ; Beekwilder, Dr. J. ; Krol, Dr. S. van der
Promotiedatum 2018-04-13
Proefschrift nr. 6903
Samenvatting door auteur toon abstract

This thesis aimed to investigate how plant monoterpenes can be used to produce biobased plastics. Monoterpenes are volatile compounds, produced by plants to defend themselves against insects and pathogens or to attract pollinators. Many monoterpenes have a characteristic odour, and are used by humans in all kinds of products for their nice smell or taste. For example the monoterpene (+)-limonene has a fresh citrus odour, and is used in cosmetics and sodas. Recently, however, it was demonstrated that the chemical structure of some monoterpenes may also be suitable to serve as a feed stock for the synthesis of commodity chemicals and biomaterials.

Plants produce monoterpenes in specialized structures, such as glandular trichomes. Trichomes are gland-like structures on the leaf surface that serve as small biochemical factories. Plants produce and store monoterpenes and other volatile compounds in these trichomes. However, the amount of monoterpenes in plants is often not large enough for bulk applications. Therefore, I set out to investigate which genes plants use to produce monoterpenes, and if I can express these genes in a better production platform, in order to produce larger amounts of monoterpenes.

Monoterpenes consist of 10 carbon atoms and are synthesized from the precursor geranyl diphosphate (GPP) in the plastids of the plant cell. After synthesis of the monoterpene backbone, usually several structural modifications, for example oxidation, take place, by other enzymes in the cell. Chapter 1 of this thesis introduces what monoterpenes are, how they are synthesized in plants and how they can be produced by metabolic engineering in heterologous hosts like micro-organisms for human applications.

One of the best studied monoterpenes is limonene. Chapter 2 reviews the existing and potential applications of limonene as well as the state of the art in its microbial production. The chapter describes which genes have been used for the biosynthesis of limonene, as well as the strategies that have been employed to enhance the production in micro-organisms.

Chapter 3 describes our production of limonene using the micro-organism Saccharomyces cerevisieae (yeast). For this purpose, a mutated yeast strain was used, which produces a small amount of GPP as precursor for limonene biosynthesis. Limonene has a chiral centre, which means it can exist in two enantiomers, (+) or (-), which are mirror images. I showed that it is possible to produce both forms in yeast by introducing limonene synthase genes from different plant species. It turned out that it is not straightforward to harvest limonene from yeast cultures, as it is very volatile and does not mix well with the culture broth. Therefore, a system was developed to trap limonene from the yeast culture headspace during production. Compared to other limonene harvesting systems, this resulted in a better yield.

Chapter 4 describes how a natural derivative of limonene, methylperillate, can be converted to plastic. Methylperillate has a suitable structure to be converted into a polymer building block. To demonstrate this, methylperillate was converted to the bulk chemical terephthalic acid, which is the building block of polyethylene terephthalate (PET). Due to the high structural similarity between methylperillate and terephthalic acid, a short chemical synthesis route consisting of two steps could be developed.

For the large scale application of methylperillate for biobased commodity chemicals, it would be useful to produce methylperillate in micro-organisms. Methylperillate has the same backbone as limonene, but with a methylated carboxyl group at the C7-position. At the onset of this thesis not much was known about the enzymes involved in the biosynthesis of such methylated carboxyl groups. In Chapter 5, I characterise a biosynthetic pathway to methylperillate. After screening several plant species we found that Salvia dorisiana, a sage species, can produce methylperillate in the glandular trichomes on its leaves. Trichomes were isolated from the leaves and used as the source, using genomics techniques, for the isolation of four genes, which I showed are involved in the biosynthesis of methylperillate. Production of methylperillate was established in the tobacco-like model plant, Nicotiana benthamiana, using these four Salvia genes. In the future these genes could also be used in yeast or other microbes to produce methylperillate in fermenters.

In Chapter 6 the research results of this thesis are discussed. A perspective is provided on producing bioplastics from compounds like methylperillate. Questions addressed in this chapter include how much monoterpenes should be produced to realistically use them for the production of biomaterials, and which possible solutions can be foreseen to produce monoterpenes on a larger scale. One future scenario is to focus on the use of monoterpenes for more specific, high-value applications by taking advantage of their natural chirality.

All in all, this research is an important first step to use specific molecules from plants as an alternative source for biomaterials. Potentially, this will decrease dependence on fossil oil, and improve sustainability of production processes.

Online Embargo op full text. Full text beschikbaar vanaf 2019-04-13
Trefwoorden (cab) biomassa / materialen uit biologische grondstoffen / bioplastics / biosynthese / enzymen / biobased economy
Rubrieken Industriële sector
Publicatie type Proefschrift
Taal Engels
Reacties
Er zijn nog geen reacties. U kunt de eerste schrijven!
Schrijf een reactie
 

To support researchers to publish their research Open Access, deals have been negotiated with various publishers. Depending on the deal, a discount is provided for the author on the Article Processing Charges that need to be paid by the author to publish an article Open Access. A discount of 100% means that (after approval) the author does not have to pay Article Processing Charges.

For the approval of an Open Access deal for an article, the corresponding author of this article must be affiliated with Wageningen University & Research.

U moet eerst inloggen om gebruik te maken van deze service. Login als Wageningen University & Research user of guest user rechtsboven op deze pagina.