PhD theses

All Wageningen University PhD theses

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    Wageningen PhD theses


    This database contains bibliographic descriptions of all Wageningen University PhD theses from 1920 onwards. It is updated on a daily basis by WUR Library.

    Author abstracts and/or summaries are added to all descriptions. A link to the full text dissertation is added to the bibliographic description. In a few cases, no electronic version is available, mostly because of copyright issues.

    Hard copies of all theses are available for loan at WUR Library. To request them, click the link Request this publication in the full record presentation. This is a fee based service.

    mail icon WUR Library, 9 july 2012

     

Record number 2249208
Title Bioprospecting of Trichococcus species
show extra info.
Nikolaos Strepis
Author(s) Strepis, Nikolaos (dissertant)
Publisher Wageningen : Wageningen University
Publication year 2019
Description 228 pages figures, diagrams
Description 1 online resource (PDF, 228 pages) figures, diagrams
Notes Includes bibliographical references. - With summary in English
ISBN 9789463433884; 9463433880
Tutors Stams, Prof. dr. A.J.M. ; Machado de Sousa, Dr. D.Z. ; Schaap, Dr. P.J.
Graduation date 2019-01-16
Dissertation no. 7136
Author abstract show abstract

Since 1928 with the discovery of penicillin, the value of microbes in our society significantly was reconsidered. Nowadays, 60% of commercial drugs and products mimic or derive from microbialmetabolites. After almost a century, can we find new compounds and where? For addressing thisquestion, we need a large-scale screening of the microbial capabilities. Trichococcus species have multiple genes for producing 1,3-propanediol (1,3-PDO), which synthesizes the partially biodegradable plastic PTT. Based on this, we developed a strategy for analyzing 90,000 bacterial genomes that eventually generated information for every microbial characteristic. The outstanding factor is that all this information is stored in a database that can be easily mined for everything. This collective andunbiased strategy resulted in identifying the key genes for efficient production of 1,3-PDO. We discovered 187 novel candidates that can produce 1,3-PDO and some were in the lab confirmed.

Another result of the screening was about Trichococcus patagoniensis. This bacterium grows in minus 5 degrees without oxygen and was discovered by NASA scientists to simulate life in other planets. When it is cold and without oxygen, T. patagoniensis “extra-terrestrial” properties allow it to create its own ”blanket” by producing exopolymer saccharides. We characterized this cryoprotectant compound as inulin, which prevents crystallization of water and many plants use it for preserving their roots in subzero temperatures. Furthermore, inulin is a commercial prebiotic and is connected with gut health. Considering the bacterial kingdom, there are limited members producing inulin and none of them wereidentified as prychrotolerant species. T. patagoniensisis produces plenty of inulin and due to its robustness, easily can be the next biofactory for the compound.The applied methods in this PhD thesis is a platform for mining every bacterial or metabolic information. All the knowledge is there and we need to dive into it. Every finding will be revolutionary and expand our perspective for microbes. Big data mining is like Zenos Dichotomy paradox, we will always know half and never everything.

Online full textINTERNET
On paper Get the document, find related information or use other SFX services
Publication type PhD thesis
Language English
Comments
There are no comments yet. You can post the first one!
Post a comment
 

To support researchers to publish their research Open Access, deals have been negotiated with various publishers. Depending on the deal, a discount is provided for the author on the Article Processing Charges that need to be paid by the author to publish an article Open Access. A discount of 100% means that (after approval) the author does not have to pay Article Processing Charges.

For the approval of an Open Access deal for an article, the corresponding author of this article must be affiliated with Wageningen University & Research.

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.