WUR Journal browser

WUR Journal browser

  • external user (warningwarning)
  • Log in as
  • The Journal Browser provides a list of more than 30,000 journals. It can be consulted by authors who wish to select a journal for publishing their manuscript Open Access. The information in this list is aggregated from several sources on a regular basis:

    • A list of journals for which the Association of Universities in the Netherlands (VSNU) has made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of Dutch universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs).
    • A list of journals covered by the Journal Citation Reports.
    • A list of journals covered by Scopus.
    • Journals indexed in the Directory of Open Access Journals (DOAJ).
    • Lists of journals for which specific Dutch universities have made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of these universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs). Depending on the university from which the Journal Browser is consulted, this information is shown.
    • Additional data on citations made to journals, in articles published by staff from a specific Dutch university, that are made available by that university. Depending on the university from which the Journal Browser is consulted, this information is shown.

    In the Journal Browser, a search box can be used to look up journals on certain subjects. The terms entered in this box are used to search the journal titles and other metadata (e.g. keywords).

    After having selected journals by subject, it is possible to apply additional filters. These concern no/full costs and discounts for Open Access publishing, support on Open Access publishing in journals, and the quartile to which the journal’s impact factor belongs.

    When one selects a journal in the Journal Browser, the following information may be presented:

    • General information about the selected journal such as title and ISSNs, together with a link to the journal’s website.
    • APC discount that holds for the selected journal if it is part of an Open Access deal.
    • Impact measures for the selected journal from Journal Citation Reports or Scopus. The impact measures that are shown may vary, depending on the university from which the Journal Browser is consulted. For some universities, the number of citations made to the selected journal (in articles published by staff from that university) is also shown.
    • Information from Sherpa/Romeo on the conditions under which articles from the selected journal may be made available via Green Open Access.
    • A listing of articles recently published in the selected journal.
    • For some universities, information is available on what journals have been co-cited most frequently together with the selected journal (in articles published by staff from these universities). When available, this information is presented under ‘similar journals’.

Plant Molecular Biology



ISSN: 0167-4412 (1573-5028)
Plant Sciences - Biochemistry & Molecular Biology - Agronomy and Crop Science - Plant Science - Genetics - Genetics

Recent articles

1 show abstract

Key message
We determined the structure of OsPYL/RCAR3:OsPP2C50 complex with pyrabactin. Our results suggest that a less-conserved phenylalanine of OsPYL/RCAR subfamily I is one of considerations of ABA agonist development for Oryza sativa.

Pyrabactin is a synthetic chemical mimicking abscisic acid (ABA), a naturally occurring phytohormone orchestrating abiotic stress responses. ABA and pyrabactin share the same pocket in the ABA receptors but pyrabactin modulates ABA signaling differently, exhibiting both agonistic and antagonistic effects. To explore structural determinants of differential functionality of pyrabactin, we determined the crystal structure of OsPYL/RCAR3:pyrabactin:OsPP2C50, the first rice ABA receptor:co-receptor complex structure with a synthetic ABA mimicry. The water-mediated interaction between the wedging Trp-259 of OsPP2C50 and pyrabactin is lost, undermining the structural integrity of the ABA receptor:co-receptor. The loss of the interaction of the wedging tryptophan of OsPP2C with pyrabactin appears to contribute to the weaker functionality of pyrabactin. Pyrabactin in the OsPYL/RCAR3:OsPP2C50 complex adopts a conformation different from that in ABA receptors from Arabidopsis. Phe125, specific to the subfamily I of OsPYL/RCARs in the ABA binding pocket, appears to be the culprit for the differential conformation of pyrabactin. Although the gate closure essential for the integrity of ABA receptor:co-receptor is preserved in the presence of pyrabactin, Phe125 apparently restricts accessibility of pyrabactin, leading to decreased affinity for OsPYL/RCAR3 evidenced by phosphatase assay. However, Phe125 does not affect conformation and accessibility of ABA. Yeast two-hybrid, germination and gene transcription analyses in rice also support that pyrabactin imposes a weak effect on the control of ABA signaling. Taken together, our results suggest that phenylalanine substitution of OsPYL/RCARs subfamily I may be one of considerations for ABA synthetic agonist development.
2 show abstract

Key message
The lower expression at veraison of several ripening master regulators “switch genes” can play a central role in the induction of the berry shrivel ripening physiological disorder in grapevine.

Berry shrivel (BS) is a ripening physiological disorder affecting grape berry with visible symptoms appearing after veraison. Berry shrivel leads to shrinking berries with a reduced weight and a lower content of sugars and anthocyanins. In this study, for the first time a transcriptomic analysis coupled with selected metabolites quantification was undertaken to understand the metabolic modifications induced by the disorder. Different stages of berry development were considered including pre- and symptomatic berries. No metabolic alterations in the berry transcriptome and in the metabolite content was observed in pre-symptomatic and pre-veraison samples. Interestingly, at veraison, with still not visible symptoms appearing on the berry, a subset of genes, called switch genes previously suggested as master regulators of the ripening onset in grape berries, were strongly lower expressed in BS. Later during the ripening phase and with visible symptoms of the disorder, more than 3000 genes were differentially expressed. The genes up-regulated were related to hormone biosynthesis, response to stress and the phenylpropanoid pathway, while the genes down-regulated during ripening belonged mainly to the flavonoid pathway, and the sugar metabolism. In agreement, BS berries showed lower content of sugars and anthocyanins from the onset of veraison onward, while the amount of acids was not significantly affected. In conclusion, these results highlight a pivotal role of the switch genes in grapevine ripening, as well as their possible contribution to induce the ripening disorder berry shrivel, although it remains unclear whether this is part of the cause or consequences of the BS disorder.
3 show abstract

Key message
The mitochondrial metallochaperone COX19 influences iron and copper responses highlighting a role of mitochondria in modulating metal homeostasis in Arabidopsis.

The mitochondrial copper chaperone COX19 participates in the biogenesis of cytochrome c oxidase (COX) in yeast and humans. In this work, we studied the function of COX19 in Arabidopsis thaliana, using plants with either decreased or increased COX19 levels. A fusion of COX19 to the red fluorescent protein localized to mitochondria in vivo, suggesting that Arabidopsis COX19 is a mitochondrial protein. Silencing of COX19 using an artificial miRNA did not cause changes in COX activity levels or respiration in plants grown under standard conditions. These amiCOX19 plants, however, showed decreased expression of the low-copper responsive miRNA gene MIR398b and an induction of the miR398 target CSD1 relative to wild-type plants. Plants with increased COX19 levels, instead, showed induction of MIR398b and other low-copper responsive genes. In addition, global transcriptional changes in rosettes of amiCOX19 plants resembled those observed under iron deficiency. Phenotypic analysis indicated that the roots of amiCOX19 plants show altered growth responses to copper excess and iron deficiency. COX activity levels and COX-dependent respiration were lower in amiCOX19 plants than in wild-type plants under iron deficiency conditions, suggesting that COX19 function is particularly important for COX assembly under iron deficiency. The results indicate that the mitochondrial copper chaperone COX19 has a role in regulating copper and iron homeostasis and responses in plants.
4 show abstract

Key message
SlPIN8 is expressed specifically within tomato pollen, and that it is involved in
tomato pollen development and intracellular auxin homeostasis.

The auxin (IAA) transport protein PIN-FORMED (PIN) plays key roles in various aspects of plant development. The biological role of the auxin transporter SlPIN8 in tomato development remains unclear. Here, we examined the expression pattern of the SlPIN8 gene in vegetative and reproductive organs of tomato. RNA interference (RNAi) transgenic lines specifically silenced for the SlPIN8 gene were generated to identify the role of SlPIN8 in pollen development. We found that SlPIN8 mRNA is expressed specifically within tomato pollen. In the anthers, the highest mRNA expression and β-glucuronidase (GUS) activity of promoter-SlPIN8-GUS was detected during late stages of anther development, when pollen maturation occurred. The downregulation of SlPIN8 did not drastically affect the vegetative growth of tomato. However, in SlPIN8-RNAi transgenic plants, approximately 80% of the pollen grains were identified to be abnormal and lack viability; they were shriveled and flattened. Furthermore, the downregulation of SlPIN8 affected the gene expression of some anther development-specific proteins. SlPIN8-RNAi transgenic plants induced seedless fruits because of defective pollen function rather than defective female gametophyte function. In addition, SlPIN8 was found to localize to the endoplasmic reticulum, consistent with the changes in the auxin levels of SlPIN8-RNAi lines, whereas the level of free IAA was increased in SlPIN8-overexpressing protoplasts, indicating that SlPIN8 is involved in intracellular auxin homeostasis.
5 show abstract

Key message
In this study, we first linked the signal molecule H2S with cucurbitacin C, which can cause the bitter taste of cucumber leaves and fruit, and specifically discuss its molecular mechanism.

Cucurbitacin C (CuC), a triterpenoid secondary metabolite, enhances the resistance of cucumber plants to pathogenic bacteria and insect herbivores, but results in bitter-tasting fruits. CuC can be induced in some varieties of cucumber on exposure to plant stressors. The gasotransmitter hydrogen sulfide (H2S) participates in multiple physiological processes relating to plant stress resistance. This study focused on the effect of H2S on low temperature-induced CuC synthesis in cucumber. The results showed that treatment of cucumber leaves at 4 °C for 12 h enhanced the content and production rate of H2S and increased the expression of genes encoding enzymes involved in H2S generation, Csa2G034800.1 (CsaLCD), Csa1G574800.1 (CsaDES1), and Csa1G574810.1 (CsaDES2). In addition, treatment at 4 °C or with exogenous H2S upregulated the expression of CuC synthetase-encoding genes and the resulting CuC content in cucumber leaves, whereas pretreatment with hypotaurine (HT, a H2S scavenger) before treatment at 4 °C offset these effects. In vitro, H2S could increase the S-sulfhydration level of His-Csa5G156220 and His-Csa5G157230 (both bHLH transcription factors), as well as their binding activity to the promoter of Csa6G088690, which encodes the key synthetase for CuC generation. H2S pretreatment enhanced the cucumber leaves resistance to the Phytophthora melonis. Together, these results demonstrated that H2S acts as a positive regulator of CuC synthesis as a result of the modification of proteins by S-sulfhydration, also providing indirect evidence for the role of H2S in improving the resistance of plants to abiotic stresses and biotic stresses by regulating the synthesis of secondary metabolites.
6 show abstract

Key message
Thirty-five IQD genes were identified and analysed in Chinese cabbage and BrIQD5 transgenic plants enhanced the drought resistance of plants.

The IQD (IQ67-domain) family plays an important role in various abiotic stress responses in plant species. However, the roles of IQD genes in the Chinese cabbage response to abiotic stress remain unclear. Here, 35 IQD genes, from BrIQD1 to BrIQD35, were identified in Chinese cabbage (Brassica rapa ssp. pekinensis). Based on the phylogenetic analysis, these genes were clustered into three subfamilies (I-III), and members within the same subfamilies shared conserved exon–intron distribution and motif composition. The 35 BrIQD genes were unevenly distributed on 9 of the 10 chromosomes with 4 segmental duplication events. Ka/Ks ratios showed that the duplicated BrIQDs had mainly experienced strong purifying selection. Quantitative real-time polymerase chain reaction of 35 BrIQDs under PEG6000 indicated that BrIQD5 was significantly induced by PEG6000. To verify BrIQD5 function, BrIQD5 was heterologously overexpressed in tobacco and was silenced in Chinese cabbage. BrIQD5-overexpressed plants showed more tolerance to drought stress than wild-type plants, while BrIQD5-silenced plants in Chinese cabbage showed decreased drought tolerance. Additionally, six BrIQD5 potential interactive proteins were isolated by the yeast two-hybrid assay, including BrCaMa, BrCaMb and four other stress-related proteins. Motif IQ1 of BrIQD5 is important for the interaction with BrCaMa and BrCaMb, and the isoleucine in motif IQ1 is an essential amino acid for calmodulin binding to BrIQD5. The identification and cloning of the new Chinese cabbage drought tolerance genes will promote the drought-resistant breeding of Chinese cabbage and help to better understand the mechanism of IQD involved in the drought tolerance of plants.
7 show abstract

Key message
PpCBF2 directly binds to the promoters of PpCBF3 and PpCBF4 to activate their expressions and selectively regulates PpDAMs during the leaf bud endodormancy process of ‘Wonhwang’ pear (Pyrus pyrifolia).

Endodormancy is critical for temperate plant survival under freezing winter conditions, and low temperature is a vital environmental factor in endodormancy regulation. A C-repeat binding factor (CBF) has been found to regulate important DAM transcription factors during endodormancy in pear (Pyrus pyrifolia). In this study, we analyzed the regulation of pear DAM genes by CBFs in further detail. Four CBF and three DAM genes were identified in the pear cultivar ‘Wonhwang’. Under natural conditions, PpDAM1 expression decreased from the start of chilling accumulation, while the other two DAM and three CBF genes peaked during endodormancy release. Under chilling treatment, the expressions of PpDAM1, PpDAM2 and PpCBF1 genes were similar to those under natural conditions. Different biochemical methods revealed that PpCBF2/4 can bind to the promoter of PpDAM1 and activate its expression and that PpCBF1/4 can activate PpDAM3. Interestingly, we found that PpCBF2 can activate PpCBF3/4 transcription by directly binding to their promoters. The ICE-CBF regulon is conserved in some plants; three ICE genes were identified in pear, but their expressions did not obviously change under natural and artificial chilling conditions. On the contrary, the selective transcriptional induction of PpCBFs by PpICE1s was observed in a dual-luciferase assay. Considering all these results, we propose that the PpCBF1-PpDAM2 regulon mainly responds to low temperature during endodormancy regulation, with further post-translational regulation by PpICE3. Our results provide basic information on CBF genes functional redundancy and differentiation and demonstrate that the CBF-DAM signaling pathway is involved in the pear bud endodormancy process.
8 show abstract

Key message
OsHIRP1 is an E3 ligase that acts as a positive regulator in the plant response to heat stress, thus providing important information relating to adaptation and regulation under heat stress in plant.

Extreme temperature adversely affects plant growth, development, and productivity. Here, we report the molecular functions of Oryza sativa heat-induced RING finger protein 1 (OsHIRP1), which might play an important role in the response to heat. Transcription of the OsHIRP1 was upregulated in response to heat and drought treatment. We found that the OsHIRP1-EYFP fusion protein was localized to the nucleus after heat treatment (45 °C). Two interacting partners, OsARK4 and OsHRK1, were identified via yeast-two-hybrid screening, which were mainly targeted to the nucleus (OsARK4) and cytosol (OsHRK1), and their interactions with OsHIRP1 were confirmed by biomolecular fluorescence complementation (BiFC). An in vitro ubiquitination assay showed that OsHIRP1 E3 ligase directly ubiquitinates its interacting proteins, OsAKR4 and OsHRK1, as substrates. Using an in vitro cell-free degradation assay, we observed a clear reduction in the levels of the two proteins under high temperature (45 °C), but not under low temperature conditions (4 °C and 30 °C). Seeds of OsHIRP1-overexpressing plants exhibited high germination rates compared with the control under heat stress. The OsHIRP1-overexpressing plants presented high survival rates of approximately 62–68%, whereas control plants displayed a low recovery rate of 34% under condition of acquired thermo-tolerance. Some heat stress-inducible genes (HsfA3, HSP17.3, HSP18.2 and HSP20) were up-regulated in OsHIRP1-overexpressing Arabidopsis than control plants under heat stress conditions. Collectively, these results suggest that OsHIRP1, an E3 ligase, positively regulates plant response to heat stress.
9 show abstract

Key message
Transcription factor MYB59 is involved in plant growth and stress responses by acting as negative regulator of Ca signalling and homeostasis.

The Arabidopsis thaliana transcription factor MYB59 is induced by cadmium (Cd) and plays a key role in the regulation of cell cycle progression and root elongation, but its mechanism of action is poorly understood. We investigated the expression of MYB59 and differences between wild-type plants, the myb59 mutant and MYB59-overexpressing lines (obtained by transformation in the mutant genotype) during plant growth and in response to various forms of stress. We also compared the transcriptomes of wild-type and myb59 mutant plants to determine putative MYB59 targets. The myb59 mutant has longer roots, smaller leaves and smaller cells than wild-type plants and responds differently to stress in germination assay. Transcriptomic analysis revealed the upregulation in the myb59 mutant of multiple genes involved in calcium (Ca) homeostasis and signalling, including those encoding calmodulin-like proteins and Ca transporters. Notably, MYB59 was strongly induced by Ca deficiency, and the myb59 mutant was characterized by higher levels of cytosolic Ca in root cells and showed a modest alteration of Ca transient frequency in guard cells, associated with the absence of Ca-induced stomatal closure. These results indicate that MYB59 negatively regulates Ca homeostasis and signalling during Ca deficiency, thus controlling plant growth and stress responses.
10 show abstract

Key message
The CmTFL1c gene of Chrysanthemum morifolium inhibits flowering, regulates inflorescence architecture and floral development.

The timing of flowering is an important ornamental trait of chrysanthemum. The gene TERMINAL FLOWER1 (TFL1) has been shown to be involved in the regulation of meristem fate and flowering time regulation. Here, a TFL1 gene named as CmTFL1c, was cloned from Chrysanthemum morifolium and further characterized. The open reading frame of CmTFL1c comprises 522 bp, which encodes a polypeptide of 173 amino acids. Phylogenetic analysis revealed that CmTFL1c belongs to the CEN/TFL1 clade. CmTFL1c protein localizes to the nucleus as well as to plasma membrane, which suggests that CmTFL1c may be a transcription factor. The CmTFL1c gene was most highly expressed in vegetative stems, and weakly expressed in leaves and flower buds; both shoot apices and stems had sensitivity to photoperiod. Overexpression of CmTFL1c in wild Arabidopsis and tfl1-13 mutant led to late flowering and altered architecture, including increased secondary branching, and abnormal inflorescences and flowers. The CmTFL1c gene negatively regulated flowering by inhibiting the up-regulation of the AtFT, AtLFY and AtAP1. The biological function of CmTFL1c was further characterized in C. morifolium via Agrobacterium-mediated transformation, which showed that CmTFL1c not only delayed flowering and promoted axillary bud formation, but also played an important role in inflorescence formation of chrysanthemum. These results showed that the CmTFL1c affects flowering time and regulates inflorescence architecture.
11 show abstract

Key message
Physical interaction and phosphorylation by CaMPK9 protects the degradation of CaWRKY40 that induces resistance response in chickpea to Fusarium wilt disease by modulating the transcription of defense responsive genes.

WRKY transcription factors (TFs) are the global regulators of plant defense signaling that modulate immune responses in host plants by regulating transcription of downstream target genes upon challenged by pathogens. However, very little is known about immune responsive role of Cicer arietinum L. (Ca) WRKY TFs particularly. Using two contrasting chickpea genotypes with respect to resistance against Fusarium oxysporum f. sp. ciceri Race1 (Foc1), we demonstrate transcript accumulation of different CaWRKYs under multiple stresses and establish that CaWRKY40 triggers defense. CaWRKY40 overexpressing chickpea mounts resistance to Foc1 by positively modulating the defense related gene expression. EMSA, ChIP assay and real-time PCR analyses suggest CaWRKY40 binds at the promoters and positively regulates transcription of CaDefensin and CaWRKY33. Further studies revealed that mitogen Activated Protein Kinase9 (CaMPK9) phosphorylates CaWRKY40 by directly interacting with its two canonical serine residues. Interestingly, CaMPK9 is unable to interact with CaWRKY40 when the relevant two serine residues were replaced by alanine. Overexpression of serine mutated WRKY40 isoform in chickpea fails to provide resistance against Foc1. Mutated WRKY40
Ser.224/225 to AA overexpressing chickpea resumes its ability to confer resistance against Foc1 after application of 26S proteasomal inhibitor MG132, suggests that phosphorylation is essential to protect CaWRKY40 from proteasomal degradation. CaMPK9 silencing also led to susceptibility in chickpea to Foc1. Altogether, our results elucidate positive regulatory roles of CaMPK9 and CaWRKY40 in modulating defense response in chickpea upon Foc1 infection.
12 show abstract

Key message
A mutation in the nuclear localization signal of squamosa promoter binding like-protein 9
(SPL9) delays vegetative phase change by disrupting its nuclear localization.

The juvenile-to-adult phase transition is a critical developmental process in plant development, and it is regulated by a decrease in miR156/157 and a corresponding increase in their targets, squamosa promoter binding protein-like (SPL) genes. SPL proteins contain a conserved SBP domain with putative nuclear localization signals (NLSs) at their C-terminals. Some SPLs promote vegetative phase change by promoting miR172 expression, but the function of nuclear localization signals in those SPLs remains unknown. Here, we identified a loss-of-function mutant, which we named del6, with delayed vegetative phase change phenotypes in a forward genetic screen. Map-based cloning, the whole genome resequencing, and allelic complementation test demonstrate that a G-to-A substitution in the SPL9 gene is responsible for the delayed vegetative phase change phenotypes. In del6, the mutation causes a substitution of the glutamine (Gln) for the conserved basic amino acid arginine (Arg) in the NLS of the SBP domain, and disrupts the normal nuclear localization and function of SPL9. Therefore, our work demonstrates that the NLSs in the SBP domain of SPL9 are indispensable for its nuclear localization and normal function in Arabidopsis.
13 show abstract

Key message
Our results reveal both soil drought and PEG can enhance malate, glutathione and ascorbate metabolism, and proline biosynthesis, whereas soil drought induced these metabolic pathways to a greater degree than PEG.

Polyethylene glycol (PEG) is widely used to simulate osmotic stress, but little is known about the different responses of wheat to PEG stress and soil drought. In this study, isobaric tags for relative quantification (iTRAQ)-based proteomic techniques were used to determine both the proteomic and physiological responses of wheat seedlings to soil drought and PEG. The results showed that photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, maximum potential efficiency of PS II, leaf water content, relative electrolyte leakage, MDA content, and free proline content exhibited similar responses to soil drought and PEG. Approximately 15.8% of differential proteins were induced both by soil drought and PEG. Moreover, both soil drought and PEG inhibited carbon metabolism and the biosynthesis of some amino acids by altering the accumulation of glyceraldehyde-3-phosphate dehydrogenase, ribulose-bisphosphate carboxylase, and phosphoglycerate kinase, but they both enhanced the metabolism of malate, proline, glutathione, and ascorbate by increasing the accumulation of key enzymes including malate dehydrogenase, monodehydroascorbate reductase, pyrroline-5-carboxylate dehydrogenase, pyrroline-5-carboxylate synthetase, ascorbate peroxidase, glutathione peroxidase, and glutathione S-transferase. Notably, the latter five of these enzymes were found to be more sensitive to soil drought. In addition, polyamine biosynthesis was specifically induced by increased gene expression and protein accumulation of polyamine oxidase and spermidine synthase under PEG stress, whereas fructose-bisphosphate aldolase and arginase were induced by soil drought. Therefore, present results suggest that PEG is an effective method to simulate drought stress, but the key proteins related to the metabolism of malate, glutathione, ascorbate, proline, and polyamine need to be confirmed under soil drought.
14 show abstract

Key message
Overexpression of the poplar PP2C protein phosphatase gene PtrHAB2 resulted in increased tree height and altered leaf morphology and phyllotaxy, implicating PP2C phosphatases as growth regulators functioning under favorable conditions.

We identified and studied Populus trichocarpa genes, PtrHAB1 through PtrHAB15, belonging to the clade A PP2C family of protein phosphatases known to regulate abscisic acid (ABA) signaling. PtrHAB1 through PtrHAB3 and PtrHAB12 through PtrHAB15 were the most highly expressed genes under non-stress conditions. The poplar PP2C genes were differentially regulated by drought treatments. Expression of PtrHAB1 through PtrHAB3 was unchanged or downregulated in response to drought, while all other PtrHAB genes were weakly to strongly upregulated in response to drought stress treatments. Yeast two-hybrid assays involving seven ABA receptor proteins (PtrRCAR) against 12 PtrHAB proteins detected 51 interactions involving eight PP2Cs and all PtrRCAR proteins with 22 interactions requiring the addition of ABA. PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 also interacted with the sucrose non-fermenting related kinase 2 proteins PtrSnRK2.10 and PtrSnRK2.11, supporting conservation of a SnRK2 signaling cascade regulated by PP2C in poplar. Additionally, PtrHAB2, PtrHAB12, PtrHAB13 and PtrHAB14 interacted with the mitogen-activated protein kinase protein PtrMPK7. Due to its interactions with PtrSnRK2 and PtrMPK7 proteins, and its reduced expression during drought stress, PtrHAB2 was overexpressed in poplar to test its potential as a growth regulator under non-stress conditions. 35S::PtrHAB2 transgenics exhibited increased growth rate for a majority of transgenic events and alterations in leaf phyllotaxy and morphology. These results indicate that PP2Cs have additional roles which extend beyond canonical ABA signaling, possibly coordinating plant growth and development in response to environmental conditions.
15 show abstract

Key message
S-RNase was demonstrated to be predominantly recognized by an S locus F-box-like protein and an S haplotype-specific F-box-like protein in compatible pollen tubes of sweet cherry.

Self-incompatibility (SI) is a reproductive barrier that rejects self-pollen and inhibits self-fertilization to promote outcrossing. In Solanaceae and Rosaceae, S-RNase-based gametophytic SI (GSI) comprises S-RNase and F-box protein(s) as the pistil and pollen S determinants, respectively. Compatible pollen tubes are assumed to detoxify the internalized cytotoxic S-RNases to maintain growth. S-RNase detoxification is conducted by the Skp1-cullin1-F-box protein complex (SCF) formed by pollen S determinants, S locus F-box proteins (SLFs), in Solanaceae. In Prunus, the general inhibitor (GI), but not pollen S determinant S haplotype-specific F-box protein (SFB), is hypothesized to detoxify S-RNases. Recently, SLF-like proteins 1–3 (SLFL1–3) were suggested as GI candidates, although it is still possible that other proteins function predominantly in GI. To identify the other GI candidates, we isolated four other pollen-expressed SLFL and SFB-like (SFBL) proteins PavSLFL6, PavSLFL7A, PavSFBL1, and PavSFBL2 in sweet cherry. Binding assays with four PavS-RNases indicated that PavSFBL2 bound to PavS1, 6-RNase while the others bound to nothing. PavSFBL2 was confirmed to form an SCF complex in vitro. A co-immunoprecipitation assay using the recombinant PavS6-RNase as bait against pollen extracts and a mass spectrometry analysis identified the SCF complex components of PavSLFLs and PavSFBL2, M-locus-encoded glutathione S-transferase (MGST), DnaJ-like protein, and other minor proteins. These results suggest that SLFLs and SFBLs could act as predominant GIs in Prunus-specific S-RNase-based GSI.
16 show abstract

Key message
We demonstrate that the C-terminus of OsCDC48 is essential for maintaining its full ATPase activity and OsCDC48/48E interaction is required to modulate cellular processes and plant survival in rice.

Cell division cycle 48 (CDC48) belongs to the superfamily protein of ATPases associated with diverse cellular activities (AAA). We previously isolated a rice CDC48 mutant (psd128) displaying premature senescence and death phenotype. Here, we showed that OsCDC48 (Os03g0151800) interacted with OsCDC48E (Os10g0442600), a homologue of OsCDC48, to control plant survival in rice. OsCDC48E knockout plants exhibited similar behavior to psd128 with premature senescence and plant death. Removal of the C-terminus of OsCDC48 caused altered expression of cell cycle-related genes, changed the percentage of cells in G1 and G2/M phases, and abolished the interaction between OsCDC48 itself and between OsCDC48 and OsCDC48E, respectively. Furthermore, the truncated OsCDC48–PSD128 protein lacking the C-terminal 27 amino acid residues showed a decreased level of ATPase activity. Overexpression of OsCDC48–psd128 resulted in differential expression of AAA-ATPase associated genes leading to increased total ATPase activity, accumulation of reactive oxygen species and decreased plant tiller numbers while overexpression of OsCDC48 also resulted in differential expression of AAA-ATPase associated genes leading to increased total ATPase activity, but increased plant tiller numbers and grain yield, indicating its potential utilization for yield improvement. Our results demonstrated that the C-terminal region of OsCDC48 was essential for maintaining the full ATPase activity and OsCDC48/48E complex might function in form of heteromultimers to modulate cellular processes and plant survival in rice.
17 show abstract

Key message
The ER membrane localized aquaporin SIP2;1 is involved in adaptation to ER stresses during pollen tube elongation.

Aquaporins play multifaceted roles through selective transport of water and small neutral substrates. Here, we focused on the physiological roles of Arabidopsis thaliana aquaporins, namely SIP1;1, SIP1;2 and SIP2;1, which are localized to the endoplasmic reticulum (ER). While their loss-of-function mutants displayed normal vegetative growth. We identified defects in pollen of sip2;1. Whereas the germination rate of sip2;1 pollen was ~ 60% that of the wild type (WT), in vitro germinated sip2;1 pollen tube length was reduced up to 82% compared to the WT. Importantly, most pollen tubes on pistils from sip2;1 stopped elongation in the mid-region of pistils, and the bottom region of sip2;1 siliques lacked seeds. Consistently, silique of sip2;1 were short, whereby the average seed number per silique was nearly the half of the WT. The above phenotypes recovered in SIP2;1 complementation lines. We detected mRNA of SIP2;1 and protein in pollen, and further revealed that the GFP-linked SIP2;1 localization in the ER of growing pollen tubes. The basal mRNA level of BINDING PROTEIN 3 (BiP3), a key gene induced by ER stress, in pollen was markedly higher than that in roots, suggesting that the pollen underwent ER stress under normal growth conditions. BiP3 mRNA was dramatically increased in sip2;1 pollen. Altogether, our findings suggest that the aquaporin SIP2;1 is probably involved in the alleviation of ER stress and that the lack of SIP2;1 reduces both pollen germination and pollen tube elongation.
18 show abstract

Key message
Functions of most splice isoforms that are generated by alternative splicing are unknown. We show that two splice variants that encode proteins differing in only eight amino acids have distinct functions in a stress response.

Serine/arginine-rich (SR) and SR-like proteins, a conserved family of RNA binding proteins across eukaryotes, play important roles in pre-mRNA splicing and other post-transcriptional processes. Pre-mRNAs of SR and SR-like proteins undergo extensive alternative splicing in response to diverse stresses and produce multiple splice isoforms. However, the functions of most splice isoforms remain elusive. Alternative splicing of pre-mRNA of Arabidopsis SR45, which encodes an SR-like splicing regulator, generates two isoforms (long—SR45.1 and short—SR45.2). The proteins encoded by these two isoforms differ in eight amino acids. Here, we investigated the role of SR45 and its splice variants in salt stress tolerance. The loss of SR45 resulted in enhanced sensitivity to salt stress and changes in expression and splicing of genes involved in regulating salt stress response. Interestingly, only the long isoform (SR45.1) rescued the salt-sensitive phenotype as well as the altered gene expression and splicing patterns in the mutant. These results suggest that SR45 positively regulates salt tolerance. Furthermore, only the long isoform is required for SR45-mediated salt tolerance.
19 show abstract

Key message
Cybrid plant mitochondria undergo homologous recombination, mainly BIR, keep a single allele for each gene, and maintain exclusive sequences of each parent and a single copy of the homologous regions.

The maintenance of a dynamic equilibrium between the mitochondrial and nuclear genomes requires continuous communication and a high level of compatibility between them, so that alterations in one genetic compartment need adjustments in the other. The co-evolution of nuclear and mitochondrial genomes has been poorly studied, even though the consequences and effects of this interaction are highly relevant for human health, as well as for crop improvement programs and for genetic engineering. The mitochondria of plants represent an excellent system to understand the mechanisms of genomic rearrangements, chimeric gene formation, incompatibility between nucleus and cytoplasm, and horizontal gene transfer. We carried out detailed analyses of the mtDNA of a repeated cybrid between the solanaceae Nicotiana tabacum and Hyoscyamus niger. The mtDNA of the cybrid was intermediate between the size of the parental mtDNAs and the sum of them. Noticeably, most of the homologous sequences inherited from both parents were lost. In contrast, the majority of the sequences exclusive of a single parent were maintained. The mitochondrial gene content included a majority of N. tabacum derived genes, but also chimeric, two-parent derived, and H. niger-derived genes in a tobacco nuclear background. Any of these alterations in the gene content could be the cause of CMS in the cybrid. The parental mtDNAs interacted through 28 homologous recombination events and a single case of illegitimate recombination. Three main homologous recombination mechanisms were recognized in the cybrid mitochondria. Break induced replication (BIR) pathway was the most frequent. We propose that BIR could be one of the mechanisms responsible for the loss of the majority of the repeated regions derived from H. niger.
20 show abstract

Key message
Symbiotic nitrogen fixation in root nodules of grain legumes is essential for high yielding. Protein phosphorylation/dephosphorylation plays important role in root nodule development. Differences in the phosphoproteomes may either be developmental specific and related to nitrogen fixation activity. An iTRAQ-based quantitative phosphoproteomic analyses during nodule development enables identification of specific phosphorylation signaling in the Lotus–rhizobia symbiosis.

During evolution, legumes (Fabaceae) have evolved a symbiotic relationship with rhizobia, which fix atmospheric nitrogen and produce ammonia that host plants can then absorb. Root nodule development depends on the activation of protein phosphorylation-mediated signal transduction cascades. To investigate possible molecular mechanisms of protein modulation during nodule development, we used iTRAQ-based quantitative proteomic analyses to identify root phosphoproteins during rhizobial colonization and infection of Lotus japonicus. 1154 phosphoproteins with 2957 high-confidence phosphorylation sites were identified. Gene ontology enrichment analysis of functional groups of these genes revealed that the biological processes mediated by these proteins included cellular processes, signal transduction, and transporter activity. Quantitative data highlighted the dynamics of protein phosphorylation during nodule development and, based on regulatory trends, seven groups were identified. RNA splicing and brassinosteroid (BR) signaling pathways were extensively affected by phosphorylation, and most Ser/Arg-rich (SR) proteins were multiply phosphorylated. In addition, many proposed kinase-substrate pairs were predicted, and in these MAPK6 substrates were found to be highly enriched. This study offers insights into the regulatory processes underlying nodule development, provides an accessible resource cataloging the phosphorylation status of thousands of Lotus proteins during nodule development, and develops our understanding of post-translational regulatory mechanisms in the Lotus–rhizobia symbiosis.

Green Open Access

Sherpa/Romeo info

Author can archive pre-print (ie pre-refereeing)
Author can archive post-print (ie final draft post-refereeing)
Author cannot archive publisher's version/PDF
  • Author's pre-print on pre-print servers such as arXiv.org
  • Author's post-print on author's personal website immediately
  • Author's post-print on any open access repository after 12 months after publication
  • Publisher's version/PDF cannot be used
  • Published source must be acknowledged
  • Must link to publisher version
  • Set phrase to accompany link to published version (see policy)
  • Articles in some journals can be made Open Access on payment of additional charge
  • Publisher last reviewed on 26/07/2016

More Sherpa/Romeo information

APC Discount

Researchers from RUG, UU, VU, UM, UL, WUR, EUR, RU, TU/e, TUD, UT, OU, TiU and UvA will receive a 100% discount on the Article Processing Charges that need to be paid by a first or corresponding author to publish open access in this journal.

More information on this Springer Open Choice deal.

This deal is valid until 2021-12-31.

More information on Open Access publishing

Last updated: 2019-01-14


Journal Citation Reports (2017)

Impact factor: 3.543
Q1 (Plant Sciences (30/222))
Q2 (Biochemistry & Molecular Biology (99/292))

Scopus Journal Metrics (2017)

SJR: 1.737
SNIP: 1.094
Impact (Scopus CiteScore): 0.388
Quartile: Q1
CiteScore percentile: 94%
CiteScore rank: 19 out of 309
Cited by WUR staff: 426 times. (2014-2016)

Similar journals  

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.