WUR Journal browser

WUR Journal browser

  • external user (warningwarning)
  • Log in as
  • The Journal Browser provides a list of more than 30,000 journals. It can be consulted by authors who wish to select a journal for publishing their manuscript Open Access. The information in this list is aggregated from several sources on a regular basis:

    • A list of journals for which the Association of Universities in the Netherlands (VSNU) has made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of Dutch universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs).
    • A list of journals covered by the Journal Citation Reports.
    • A list of journals covered by Scopus.
    • Journals indexed in the Directory of Open Access Journals (DOAJ).
    • Lists of journals for which specific Dutch universities have made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of these universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs). Depending on the university from which the Journal Browser is consulted, this information is shown.
    • Additional data on citations made to journals, in articles published by staff from a specific Dutch university, that are made available by that university. Depending on the university from which the Journal Browser is consulted, this information is shown.

    In the Journal Browser, a search box can be used to look up journals on certain subjects. The terms entered in this box are used to search the journal titles and other metadata (e.g. keywords).

    After having selected journals by subject, it is possible to apply additional filters. These concern no/full costs and discounts for Open Access publishing, support on Open Access publishing in journals, and the quartile to which the journal’s impact factor belongs.

    When one selects a journal in the Journal Browser, the following information may be presented:

    • General information about the selected journal such as title and ISSNs, together with a link to the journal’s website.
    • APC discount that holds for the selected journal if it is part of an Open Access deal.
    • Impact measures for the selected journal from Journal Citation Reports or Scopus. The impact measures that are shown may vary, depending on the university from which the Journal Browser is consulted. For some universities, the number of citations made to the selected journal (in articles published by staff from that university) is also shown.
    • Information from Sherpa/Romeo on the conditions under which articles from the selected journal may be made available via Green Open Access.
    • A listing of articles recently published in the selected journal.
    • For some universities, information is available on what journals have been co-cited most frequently together with the selected journal (in articles published by staff from these universities). When available, this information is presented under ‘similar journals’.




ISSN: 0032-0935 (1432-2048)
Plant Sciences - Plant Science - Genetics

Recent articles

1 show abstract

Main conclusion
Studies on the tissue culture of apple have allowed for molecular, biotechnological and applied breeding research to advance. In the past 8 years, over 100 papers advancing basic biology, genetic transformation and cryobiology have emerged.
Apple (Malus × domestica Borkh.; Rosaceae) is an important fruit crop grown mainly in temperate regions of the world. In vitro tissue culture is a biotechnological technique that has been used to genetically improve cultivars (scions) and rootstocks. This updated review presents a synthesis of findings related to the tissue culture of apple and other Malus spp. between 2010 and 2018. Increasingly complex molecular studies that are examining the apple genome, for example, in a bid to identify the cause of epigenetic mutations and the role of transposable elements in this process would benefit from genetically stable source material, which can be produced in vitro. Several notable or curious in vitro culture methods have been reported to improve shoot regeneration and induce the production of tetraploids in apple cultivars and rootstocks. Existing studies have revealed the molecular mechanism underlying the inhibition of adventitious roots by cytokinin. The use of the plant growth correction factor allows hypothetical shoot production from leaf-derived thin cell layers relative to conventional leaf explants to be determined. This updated review will allow novices and established researchers to advance apple and Malus biotechnology and breeding programs.
2 show abstract

Main conclusion

Camellia japonica antioxidant capacity highly differs among its cultivars and could be successfully predicted by near- and mid-infrared spectroscopy.

Camellia japonica is a Theaceae family species which are mainly used as an ornamental plant due to its colourful flowers presenting over than 32,000 recognized cultivars. However, this species have been somehow neglected due to the popular tea source, Camellia sinensis. In this study, the antioxidant profile (total phenolic and flavonoid content and total antioxidant capacity—TPC, TFC and TAC) of 31 C. japonica cultivars leaves was determined and further assessed by near- and mid-infrared spectroscopy. The leaves’ antioxidant profile was revealed to be highly dependent on the cultivars analysed being in some cases distinct even for different trees of the same cultivar. Near- and mid-infrared spectroscopy proved to be suitable techniques to predict the total phenolic and flavonoid content as well as the total antioxidant capacity. The best results were obtained with near-infrared spectroscopy whose root mean square error of the prediction set samples was of 5.7 mg of gallic acid/g dry leaf; 3.5 mg catechin/g dry leaf and 3.3 mM Trolox/g dry leaf for TPC, TFC and TAC (with coefficients of the determinations equal to or higher than 0.93). Moreover, the range error ratios were higher than 15 meaning that the developed partial least-squares models are very good for calibration and quantification determinations according to the guidelines for near-infrared models development and maintenance. In this work, the antioxidant profile of several C. japonica cultivars leaves was determined for the first time, being that a rapid and low cost spectroscopic-based method was also proposed for its determination.
3 show abstract

Main conclusion
A systematic analysis of NaCl-dependent, plasma-membrane depolarization (∆∆Ψ) in rice roots calls into question the current leading model of rapid membrane cycling of Na+ under salt stress.
To investigate the character and mechanisms of Na+ influx into roots, Na+-dependent changes in plasma-membrane electrical potentials (∆∆Ψ) were measured in root cells of intact rice (Oryza sativa L., cv. Pokkali) seedlings. As external sodium concentrations ([Na+]ext) were increased in a step gradient from 0 to 100 mM, membrane potentials depolarized in a saturable manner, fitting a Michaelis–Menten model and contradicting the linear (non-saturating) models developed from radiotracer studies. Clear differences in saturation patterns were found between plants grown under low- and high-nutrient (LN and HN) conditions, with LN plants showing greater depolarization and higher affinity for Na+ (i.e., higher V
max and lower K
m) than HN plants. In addition, counterion effects on ∆∆Ψ were pronounced in LN plants (with ∆∆Ψ decreasing in the order: Cl− > SO4
2− > HPO
), but not seen in HN plants. When effects of osmotic strength, Cl− influx, K+ efflux, and H+-ATPase activity on ∆∆Ψ were accounted for, resultant K
m and V
max values suggested that a single, dominant Na+-transport mechanism was operating under each nutritional condition, with K
m values of 1.2 and 16 mM for LN and HN plants, respectively. Comparing saturating patterns of depolarization to linear patterns of 24Na+ radiotracer influx leads to the conclusion that electrophysiological and tracer methods do not report the same phenomena and that the current model of rapid transmembrane sodium cycling may require revision.
4 show abstract

Main conclusion
Plant tissue culture has been used for conservation, micropropagation, and in planta overproduction of some pharma molecules of medicinal plants. New biotechnology-based breeding methods such as targeted genome editing methods are able to create custom-designed medicinal plants with different secondary metabolite profiles.
For a long time, humans have used medicinal plants for therapeutic purposes and in food and other industries. Classical biotechnology techniques have been exploited in breeding medicinal plants. Now, it is time to apply faster biotechnology-based breeding methods (BBBMs) to these valuable plants. Assessment of the genetic diversity, conservation, proliferation, and overproduction are the main ways by which genetics and biotechnology can help to improve medicinal plants faster. Plant tissue culture (PTC) plays an important role as a platform to apply other BBBMs in medicinal plants. Agrobacterium-mediated gene transformation and artificial polyploidy induction are the main BBBMs that are directly dependent on PTC. Manageable regulation of endogens and/or transferred genes via engineered zinc-finger proteins or transcription activator-like effectors can help targeted manipulation of secondary metabolite pathways in medicinal plants. The next-generation sequencing techniques have great potential to study the genetic diversity of medicinal plants through restriction-site-associated DNA sequencing (RAD-seq) technique and also to identify the genes and enzymes that are involved in the biosynthetic pathway of secondary metabolites through precise transcriptome profiling (RNA-seq). The sequence-specific nucleases of transcription activator-like effector nucleases (TALENs), zinc-finger nucleases, and clustered regularly interspaced short palindromic repeats-associated (Cas) are the genome editing methods that can produce user-designed medicinal plants. These current targeted genome editing methods are able to manage plant synthetic biology and open new gates to medicinal plants to be introduced into appropriate industries.
5 show abstract

Main conclusion
Investigation of photosynthesis regulation in different plant groups exposed to variable conditions showed that all species have similar photosynthetic electron transport modulation while excess energy dissipation is species specific.
Photosynthesis is regulated in response to dynamic environmental conditions to satisfy plant metabolic demands while also avoiding possible over-excitation of the electron transport chain and the generation of harmful reactive oxygen species. Photosynthetic organisms evolved several mechanisms to modulate light harvesting and electron transport efficiency to respond to conditions changing at different timescales, going from fast sun flecks to slow seasonal variations. These regulatory mechanisms changed during evolution of photosynthetic organisms, also adapting to various ecological niches, making the investigation of plant biodiversity highly valuable to uncover conserved traits and plasticity of photosynthetic regulation and complement studies on model species. In this work, a set of plants belonging to different genera of angiosperms, gymnosperms, ferns and lycophytes were investigated by monitoring their photosynthetic parameters in different seasons looking for common trends and differences. In all plants, analysed photosynthetic electron transport rate was found to be modulated by growth light intensity, ensuring a balance between available energy and photochemical capacity. Growth light also influenced the threshold where heat dissipation of excitation energy, a mechanism called non-photochemical quenching (NPQ), was activated. On the contrary, NPQ amplitude did not correlate with light intensity experienced by the plants but was a species-specific feature. The zeaxanthin-dependent component of NPQ, qZ, was found to be the most variable in different plants and its modulation influenced the intensity and the kinetic properties of the response.
6 show abstract

Main conclusion

Transgenic western wheatgrass degrades the explosive RDX and detoxifies TNT.

Contamination, from the explosives, hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), and 2, 4, 6-trinitrotoluene (TNT), especially on live-fire training ranges, threatens environmental and human health. Phytoremediation is an approach that could be used to clean-up explosive pollution, but it is hindered by inherently low in planta RDX degradation rates, and the high phytotoxicity of TNT. The bacterial genes, xplA and xplB, confer the ability to degrade RDX in plants, and a bacterial nitroreductase gene nfsI enhances the capacity of plants to withstand and detoxify TNT. While the previous studies have used model plant species to demonstrate the efficacy of this technology, trials using plant species able to thrive in the challenging environments found on military training ranges are now urgently needed. Perennial western wheatgrass (Pascopyrum smithii) is a United States native species that is broadly distributed across North America, well-suited for phytoremediation, and used by the US military to re-vegetate military ranges. Here, we present the first report of the genetic transformation of western wheatgrass. Plant lines transformed with xplA, xplB, and nfsI removed significantly more RDX from hydroponic solutions and retained much lower, or undetectable, levels of RDX in their leaf tissues when compared to wild-type plants. Furthermore, these plants were also more resistant to TNT toxicity, and detoxified more TNT than wild-type plants. This is the first study to engineer a field-applicable grass species capable of both RDX degradation and TNT detoxification. Together, these findings present a promising biotechnological approach to sustainably contain, remove RDX and TNT from training range soil and prevent groundwater contamination.
7 show abstract

Main conclusion

Expression of


, a novel PSK-encoding gene from soybean, increases seed size and yield in transgenic plants by promoting cell expansion.

Phytosulfokine-α (PSK-α), a sulfated pentapeptide hormone with the sequence YIYTQ, plays important roles in many aspects of plant growth and development. In this study, we identified a pair of putative precursor genes in soybean, GmPSKγ1 and -2, encoding a PSK-like peptide: PSK-γ. Similar to PSK-α in amino acid composition, the sequence of PSK-γ is YVYTQ, and the tyrosines undergo sulfonylation. Treatment of Arabidopsis seedlings with synthetic sulfated PSK-γ significantly enhanced root elongation, indicating that PSK-γ might be a functional analog of PSK-α. Expression pattern analysis revealed that the two GmPSKγ genes, especially GmPSKγ1, are primarily expressed in developing soybean seeds. Heterologous expression of GmPSKγ1 under the control of a seed-specific promoter markedly increased seed size and weight in Arabidopsis, and this promoting effect of PSK-γ on seed growth was further confirmed in transgenic tobacco constitutively expressing GmPSKγ1. Cytological analysis of transgenic Arabidopsis seeds revealed that PSK-γ promotes seed growth by inducing embryo cell expansion. In addition, expression analysis of downstream candidate genes suggested that PSK-γ signaling might regulate cell wall loosening to promote cell expansion in Arabidopsis seeds. Overall, our results shed light on the mechanism by which PSK-γ promotes seed growth, paving the way for the use of this new peptide for biotechnological improvement of crop seed/grain size and yield.
8 show abstract

Main conclusion
Stable QTL for grain protein content co-migrating with nitrogen-related genes have been identified by the candidate genes and genome-wide association mapping approaches useful for marker-assisted selection.
Grain protein content (GPC) is one of the most important quality traits in wheat, defining the nutritional and end-use properties and rheological characteristics. Over the years, a number of breeding programs have been developed aimed to improving GPC, most of them having been prevented by the negative correlation with grain yield. To overcome this issue, a collection of durum wheat germplasm was evaluated for both GPC and grain protein deviation (GPD) in seven field trials. Fourteen candidate genes involved in several processes related to nitrogen metabolism were precisely located on two high-density consensus maps of common and durum wheat, and six of them were found to be highly associated with both traits. The wheat collection was genotyped using the 90 K iSelect array, and 11 stable quantitative trait loci (QTL) for GPC were detected in at least three environments and the mean across environments by the genome-wide association mapping. Interestingly, seven QTL were co-migrating with N-related candidate genes. Four QTL were found to be significantly associated to increases of GPD, indicating that selecting for GPC could not affect final grain yield per spike. The combined approaches of candidate genes and genome-wide association mapping led to a better understanding of the genetic relationships between grain storage proteins and grain yield per spike, and provided useful information for marker-assisted selection programs.
9 show abstract

Main conclusion

Arabidopsis Mediator subunits 2, 14, 15a, 16, and 25 are required for papillae development on the trichome cell wall surface.

Arabidopsis leaf hairs exhibit raised protrusions, termed papillae, on their cell wall surfaces. Here, we show that the glassy hair mutant, glh2, exhibits trichomes with an approximate 11-fold decrease in papillae density on their surfaces in comparison to wild type. This phenotype was found to be the result of mutations in Arabidopsis Mediator subunit 16. MED16 is localized to the nucleus of trichomes, consistent with Mediator’s role in transcription. The expression patterns of the trichome development reporters, ETR2pro::GUS and GL2pro::GUS, as well as GL2 transcript levels were not altered in the glh2 mutant. Screening of available T-DNA insertion lines in other subunits of the Mediator tail module revealed glassy trichome phenotypes in med2, med14, and med15a mutants. The data suggest that the Mediator complex is required for expression of genes involved in trichome papillae development.
10 show abstract

Main conclusion
Indole-3-acetylaspartate and indole-3-acetylglutamate are the stored auxin amino acid conjugates of the achene of the diploid strawberry and serve as sources of auxin during seedling growth.
The edible part of the strawberry, a pseudocarp, has long been known to enlarge in response to auxin produced by the developing achenes, the botanical true fruit. Auxin homeostasis involves a complex interaction between biosynthesis, conjugate formation and hydrolysis, catabolism and transport. Strawberry tissues are capable of synthesizing auxin conjugates, and transcriptome data support the expression of genes involved in IAA conjugate formation and hydrolysis throughout embryo development and subsequent seedling growth. Using a highly sensitive and selective mass spectrometric method, we identified all the low molecular weight indole-auxin amino acid conjugates in achenes of F. vesca as consisting of indole-3-acetylaspartate (IAasp) and indole-3-acetylglutamate (IAglu). In contrast to what has been proposed to occur in Arabidopsis, we determined that IAasp and IAglu are hydrolyzed by seedlings to provide a source of free IAA for growth.

11 show abstract

Main conclusion

Lateral Organ Boundaries Domain 13 (LBD13), which is expressed in emerged lateral roots and encodes a transcriptional activator, plays an important role in lateral root formation in Arabidopsis.
Lateral roots (LRs) are major determinants of root system architecture, contributing to the survival strategies of plants. Members of the LBD gene family encode plant-specific transcription factors that play key roles in plant organ development. Several LBD genes, such as LBD14, 16, 18, 29, and 33, have been shown to play important roles in regulating LR development in Arabidopsis. In the present study, we show that LBD13 is expressed in emerged LRs and LR meristems of elongated LRs and regulates LR formation in Arabidopsis. Transient gene expression assays with Arabidopsis protoplasts showed that LBD13 is localized to the nucleus and harbors transcription-activating potential. Knock-down of LBD13 expression by RNA interference resulted in reduced LR formation, whereas overexpression of LBD13 enhanced LR formation in transgenic Arabidopsis. Analysis of β-glucuronidase (GUS) expression under the control of the LBD13 promoter showed that GUS staining was detected in LRs emerged from the primary root, but not in LR primordia. Moreover, both the distribution of LR primordium number and developmental kinetics of LR primordia were not affected either by knock-down or by overexpression of LBD13. Taken together, these results suggest that LBD13 is a nuclear-localized transcriptional activator and controls LR formation during or after LR emergence.
12 show abstract

Main conclusion
Photoacclimation to variable light and photoperiod regimes in C. vulgaris represents a complex interplay between “biogenic” phytochrome-mediated sensing and “operational” redox sensing signaling pathways.

Chlorella vulgaris Beijerinck UTEX 265 exhibits a yellow–green phenotype when grown under high light (HL) in contrast to a dark green phenotype when grown at low light (LL). The redox state of the photosynthetic electron transport chain (PETC) as estimated by excitation pressure has been proposed to govern this phenotypic response. We hypothesized that if the redox state of the PETC was the sole regulator of the HL phenotype, C. vulgaris should photoacclimate in response to the steady-state excitation pressure during the light period regardless of the length of the photoperiod. As expected, LL-grown cells exhibited a dark green phenotype, low excitation pressure (1 − qP = 0.22 ± 0.02), high chlorophyll (Chl) content (375 ± 77 fg Chl/cell), low Chl a/b ratio (2.97 ± 0.18) as well as high photosynthetic efficiency and photosynthetic capacity regardless of the photoperiod. In contrast, C. vulgaris grown under continuous HL developed a yellow–green phenotype characterized by high excitation pressure (1 − qP = 0.68 ± 0.01), a relatively low Chl content (180 ± 53 fg Chl/cell), high Chl a/b ratio (6.36 ± 0.54) with concomitantly reduced light-harvesting polypeptide abundance, as well as low photosynthetic capacity and efficiency measured on a per cell basis. Although cells grown under HL and an 18 h photoperiod developed a typical yellow–green phenotype, cells grown at HL but a 12 h photoperiod exhibited a dark green phenotype comparable to LL-grown cells despite exhibiting growth under high excitation pressure (1 − qP = 0.80 ± 0.04). The apparent uncoupling of excitation pressure and phenotype in HL-grown cells and a 12 h photoperiod indicates that chloroplast redox status cannot be the sole regulator of photoacclimation in C. vulgaris. We conclude that photoacclimation in C. vulgaris to HL is dependent upon growth history and reflects a complex interaction of endogenous systems that sense changes in photoperiod as well as photosynthetic redox balance.
13 show abstract

Main conclusion
Cotton GaTOP6B is involved in cellular endoreduplication and a positive response to drought stress via promoting plant leaf and root growth.
Drought is deemed as one of adverse conditions that could cause substantial reductions in crop yields worldwide. Since cotton exhibits a moderate-tolerant phenotype under water-deficit conditions, the plant could therefore be used to characterize potential new genes regulating drought tolerance in crop plants. In this work, GaTOP6B, encoding DNA topoisomerase VI subunit B, was identified in Asian cotton (Gossypium arboreum). Virus-induced gene silencing (VIGS) and overexpression (OE) were used to investigate the biological function of GaTOP6B in G. arboreum and Arabidopsis thaliana under drought stress. The GaTOP6B-silencing plants showed a reduced ploidy level, and displayed a compromised tolerance phenotype including lowered relative water content (RWC), decreased proline content and antioxidative enzyme activity, and an increased malondialdehyde (MDA) content under drought stress. GaTOP6B-overexpressing Arabidopsis lines, however, had increased ploidy levels, and were more tolerant to drought treatment, associated with improved RWC maintenance, higher proline accumulation, and reduced stomatal aperture under drought stress. Transcriptome analysis showed that genes involved in the processes like cell cycle, transcription and signal transduction, were substantially up-regulated in GaTOP6B-overexpressing Arabidopsis, promoting plant growth and development. More specifically, under drought stress, the genes involved in the biosynthesis of secondary metabolites such as phenylpropanoid, starch and sucrose were selectively enhanced to improve tolerance in plants. Taken together, the results demonstrated that GaTOP6B could coordinately regulate plant leaf and root growth via cellular endoreduplication, and positively respond to drought stress. Thus, GaTOP6B could be a competent candidate gene for improvement of drought tolerance in crop species.
14 show abstract

Main conclusion
Alternative splicing EVENTS were genome-wide identified for four legume species, and nitrogen fixation-related gene families and evolutionary analysis was also performed.
Alternative splicing (AS) is a key regulatory mechanism that contributes to transcriptome and proteome diversity. Investigation of the genome-wide conserved AS events across different species will help with the understanding of the evolution of the functional diversity in legumes, allowing for genetic improvement. Genome-wide identification and characterization of AS were performed using the publically available mRNA, EST, and RNA-Seq data for four important legume species. A total of 15,165 AS genes in Glycine max, 6077 in Cicer arietinum, 7240 in Medicago truncatula, and 7358 in Lotus japonicus were identified. Intron retention (IntronR) was the dominant AS type among the identified events, with IntronR occurring from 53.76% in M. truncatula to 43.91% in C. arietinum. We identified 1159 AS genes that were conserved among four species. Furthermore, nine nitrogen fixation-related gene families with 237 genes were identified, and 80 of them were AS, accounting for the 43.48% in G. max and 27.78% in C. arietinum. An evolutionary analysis showed that these AS genes tended to be located adjacent to each other in the evolutionary tree and are unbalanced in the distribution in the sub-family. This study provides a foundation for future studies on transcription complexity, evolution, and the role of AS on plant functional regulation.
15 show abstract

Main conclusion
Growth in hot climates selectively alters potato tuber secondary metabolism—such as the anthocyanins, carotenoids, and glycoalkaloids—changing its nutritive value and the composition of health-promoting components.

Potato breeding for improved nutritional value focuses mainly on increasing the health-promoting carotenoids and anthocyanins, and controlling toxic steroidal glycoalkaloids (SGAs). Metabolite levels are genetically determined, but developmental, tissue-specific, and environmental cues affect their final content. Transcriptomic and metabolomic approaches were applied to monitor carotenoid, anthocyanin, and SGA metabolite levels and their biosynthetic genes’ expression under heat stress. The studied cultivars differed in tuber flesh carotenoid concentration and peel anthocyanin concentration. Gene expression studies showed heat-induced downregulation of specific genes for SGA, anthocyanin, and carotenoid biosynthesis. KEGG database mapping of the heat transcriptome indicated reduced gene expression for specific metabolic pathways rather than a global heat response. Targeted metabolomics indicated reduced SGA concentration, but anthocyanin pigments concentration remained unchanged, probably due to their stabilization in the vacuole. Total carotenoid level did not change significantly in potato tuber flesh, but their composition did. Results suggest that growth in hot climates selectively alters tuber secondary metabolism, changing its nutritive value and composition of health-promoting components.
16 show abstract

Main conclusion

Multiple dehydration/rehydration treatments improve the adaptation of

Craterostigma plantagineum

to desiccation by accumulating stress-inducible transcripts, proteins and metabolites. These molecules serve as stress imprints or memory and can lead to increased stress tolerance.

It has been reported that repeated exposure to dehydration may generate stronger reactions during a subsequent dehydration treatment in plants. This stimulated us to address the question whether the desiccation tolerant resurrection plant Craterostigma plantagineum has a stress memory. The expression of four representative stress-related genes gradually increased during four repeated dehydration/rehydration treatments in C. plantagineum. These genes reflect a transcriptional memory and are trainable genes. In contrast, abundance of chlorophyll synthesis/degradation-related transcripts did not change during dehydration and remained at a similar level as in the untreated tissues during the recovery phase. During the four dehydration/rehydration treatments the level of ROS pathway-related transcripts, superoxide dismutase (SOD) activity, proline, and sucrose increased, whereas H2O2 content and electrolyte leakage decreased. Malondialdehyde (MDA) content did not change during the dehydration, which indicates a gain of stress tolerance. At the protein level, increased expression of four representative stress-related proteins showed that the activated stress memory can persist over several days. The phenomenon described here could be a general feature of dehydration stress memory responses in resurrection plants.
17 show abstract

Main conclusion
Rhizobial symbiosis improved the water status of bean plants under salinity-stress conditions, in part by increasing their osmotic root water flow.
One of the main problems for agriculture worldwide is the increasing salinization of farming lands. The use of soil beneficial microorganisms stands up as a way to tackle this problem. One approach is the use of rhizobial N2-fixing, nodule-forming bacteria. Salinity-stress causes leaf dehydration due to an imbalance between water lost through stomata and water absorbed by roots. The aim of the present study was to elucidate how rhizobial symbiosis modulates the water status of bean (Phaseolus vulgaris) plants under salinity-stress conditions, by assessing the effects on root hydraulic properties. Bean plants were inoculated or not with a Rhizobium leguminosarum strain and subjected to moderate salinity-stress. The rhizobial symbiosis was found to improve leaf water status and root osmotic water flow under such conditions. Higher content of nitrogen and lower values of sodium concentration in root tissues were detected when compared to not inoculated plants. In addition, a drop in the osmotic potential of xylem sap and increased amount of PIP aquaporins could favour higher root osmotic water flow in the inoculated plants. Therefore, it was found that rhizobial symbiosis may also improve root osmotic water flow of the host plants under salinity stress.
18 show abstract

Main conclusion
In this genome-wide association study, we obtained novel insights into the genetic basis of the effect of herbivory or drought stress on the level of resistance against the fungus Botrytis cinerea.
In nature, plants function in complex environments where they encounter different biotic and abiotic stresses individually, sequentially or simultaneously. The adaptive response to a single stress does not always reflect how plants respond to such a stress in combination with other stresses. To identify genetic factors that contribute to the plant’s ability to swiftly adapt to different stresses, we investigated the response of Arabidopsis thaliana to infection by the necrotrophic fungus B. cinerea when preceded by Pieris rapae herbivory or drought stress. Using 346 natural A. thaliana accessions, we found natural genetic variation in the level of resistance against single B. cinerea infection. When preceded by herbivory or drought stress, the level of B. cinerea resistance was differentially influenced in the 346 accessions. To study the genetic factors contributing to the differential adaptation of A. thaliana to B. cinerea infection under multi-stress conditions, we performed a genome-wide association study supported by quantitative trait loci mapping and fine mapping with full genome sequences of 164 accessions. This yielded several genes previously associated with defense to B. cinerea and additional candidate genes with putative roles in the plant’s adaptive response to a combination of herbivory, drought and B. cinerea infection.
19 show abstract

Main conclusion

Transcriptome analysis revealed high expression of saponin biosynthetic genes may account for highly accumulated saponins in 3-year-old

Panax notoginseng

roots and






were functionally verified by transgenic tobacco.

Panax notoginseng is a well-known traditional medical herb that contains bioactive compounds known as saponins. Three major dammarene-type triterpene saponins including R1, Rb1, and Rg1 were found to be highly accumulated in the roots of 3-year-old plants when compared to those of 1-year-old plants. However, the underlying cellular mechanism is poorly understood. In this study, transcriptome analysis revealed that most genes involved in saponin biosynthesis in P. notoginseng roots augmented during their growth periods. The analysis of the KEGG pathway indicated that the primary metabolism, cell growth, and differentiation were less active in the roots of 3-year-old plant; however, secondary metabolisms were enhanced, thus providing molecular evidence for the harvesting of P. notoginseng roots in the 3rd year of growth. Furthermore, the functional role of DS and CYP716A47-like, two of the candidate genes involved in saponin biosynthesis isolated from P. notoginseng, were verified via overexpression in cultivated tobacco. Approximately, 0.325 µg g−1 of dammarenediol-II and 0.320 µg g−1 of protopanaxadiol were recorded in the dry leaves of transgenic tobacco overexpressed with DS and both DS and CYP716A47-like, respectively. This study provides insights into the molecular mechanisms for saponin accumulation in P. notoginseng roots during its growth period and paves a promising way to produce dammarenediol-II and protopanaxadiol via transgenic techniques.
20 show abstract

Main conclusion

MdPUB29 is a positive regulator of the defense response to the fungal pathogen Botryosphaeria dothidea possibly by directly regulating the salicylic acid (SA) content as well as SA synthesis-related and signaling-related gene transcription.
In plants, ubiquitin E3 ligases containing a U-box domain (PUBs, Plant U-box E3 ubiquitin ligase) have been identified as key regulators of fundamental cellular processes, such as cellular growth, development, and apoptosis, as well as biotic and abiotic stress responses. However, the function of PUBs in apple ring rot remains elusive. Here, we isolated the U-box E3 ligase MdPUB29 from the apple cultivar ‘Royal Gala’ and characterized its function in plant pathogen defense against Botryosphaeria dothidea. qRT-PCR showed that the expression of MdPUB29 was significantly induced in apple fruits after B. dothidea infection. Overexpression of the MdPUB29 gene in apple calli increased the resistance to B. dothidea infection. In contrast, silencing MdPUB29 in apple calli resulted in reduced resistance. Ectopic expression of MdPUB29 in Arabidopsis also exhibited enhanced resistance to B. dothidea infection compared to that of the wild-type (Col) control. In addition, it was found that the increase of plant pathogen defense was correlated with the increased salicylic acid (SA) content, as well as SA synthesis-related and signaling-related gene transcription in comparison to the wild type. We elucidated the mechanism by which MdPUB29 elevates plant pathogen defense against B. dothidea possibly by regulating the SA pathway.

Green Open Access

Sherpa/Romeo info

Author can archive pre-print (ie pre-refereeing)
Author can archive post-print (ie final draft post-refereeing)
Author cannot archive publisher's version/PDF
  • Author's pre-print on pre-print servers such as arXiv.org
  • Author's post-print on author's personal website immediately
  • Author's post-print on any open access repository after 12 months after publication
  • Publisher's version/PDF cannot be used
  • Published source must be acknowledged
  • Must link to publisher version
  • Set phrase to accompany link to published version (see policy)
  • Articles in some journals can be made Open Access on payment of additional charge
  • Publisher last reviewed on 26/07/2016

More Sherpa/Romeo information

APC Discount

Researchers from RUG, UU, VU, UM, UL, WUR, EUR, RU, TU/e, TUD, UT, OU, TiU and UvA will receive a 100% discount on the Article Processing Charges that need to be paid by a first or corresponding author to publish open access in this journal.

More information on this Springer Open Choice deal.

This deal is valid until 2021-12-31.

More information on Open Access publishing

Last updated: 2019-01-14


Journal Citation Reports (2017)

Impact factor: 3.249
Q1 (Plant Sciences (33/222))

Scopus Journal Metrics (2017)

SJR: 1.508
SNIP: 1.203
Impact (Scopus CiteScore): 0.355
Quartile: Q1
CiteScore percentile: 90%
CiteScore rank: 36 out of 389
Cited by WUR staff: 596 times. (2014-2016)

Similar journals  

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.