WUR Journal browser

WUR Journal browser

  • external user (warningwarning)
  • Log in as
  • The Journal Browser provides a list of more than 30,000 journals. It can be consulted by authors who wish to select a journal for publishing their manuscript Open Access. The information in this list is aggregated from several sources on a regular basis:

    • A list of journals for which the Association of Universities in the Netherlands (VSNU) has made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of Dutch universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs).
    • A list of journals covered by the Journal Citation Reports.
    • A list of journals covered by Scopus.
    • Journals indexed in the Directory of Open Access Journals (DOAJ).
    • Lists of journals for which specific Dutch universities have made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of these universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs). Depending on the university from which the Journal Browser is consulted, this information is shown.
    • Additional data on citations made to journals, in articles published by staff from a specific Dutch university, that are made available by that university. Depending on the university from which the Journal Browser is consulted, this information is shown.

    In the Journal Browser, a search box can be used to look up journals on certain subjects. The terms entered in this box are used to search the journal titles and other metadata (e.g. keywords).

    After having selected journals by subject, it is possible to apply additional filters. These concern no/full costs and discounts for Open Access publishing, support on Open Access publishing in journals, and the quartile to which the journal’s impact factor belongs.

    When one selects a journal in the Journal Browser, the following information may be presented:

    • General information about the selected journal such as title and ISSNs, together with a link to the journal’s website.
    • APC discount that holds for the selected journal if it is part of an Open Access deal.
    • Impact measures for the selected journal from Journal Citation Reports or Scopus. The impact measures that are shown may vary, depending on the university from which the Journal Browser is consulted. For some universities, the number of citations made to the selected journal (in articles published by staff from that university) is also shown.
    • Information from Sherpa/Romeo on the conditions under which articles from the selected journal may be made available via Green Open Access.
    • A listing of articles recently published in the selected journal.
    • For some universities, information is available on what journals have been co-cited most frequently together with the selected journal (in articles published by staff from these universities). When available, this information is presented under ‘similar journals’.
    About

Journal of Chemical Ecology

Springer

1975-

ISSN: 0098-0331 (1573-1561)
Ecology - Biochemistry & Molecular Biology - Ecology, Evolution, Behavior and Systematics - Biochemistry - Biochemistry

Recent articles

1 show abstract
2019-03-18

The common grass yellow Eurema mandarina (Lepidoptera: Pieridae) uses the silk tree Albizia julibrissin (Fabaceae) as a primary host in Japan. We previously reported that d-pinitol, a cyclitol found in fresh leaves of A. julibrissin, solely elicits moderate oviposition responses from females. However, the aqueous neutral/amphoteric fraction of the fresh leaf extract containing d-pinitol weakly induces oviposition. Moreover, the aqueous neutral/amphoteric/basic fraction was significantly more active than the neutral/amphoteric fraction in eliciting responses, indicating that some basic compounds are involved in stimulating oviposition. High-resolution mass spectrometry and proton nuclear magnetic resonance measurements revealed that the aqueous basic faction contains N,N,N-trimethylglycine (trivial name: glycine betaine) in alkali metal salt form. The average concentration of this quaternary ammonium compound in fresh leaves was estimated to be 0.012% w/w in high performance liquid chromatography analyses. The authentic N,N,N-trimethylglycine induced oviposition at concentrations greater than 0.001% (w/v) and slightly enhanced female responses to the aqueous neutral fraction and authentic d-pinitol. However, its analogues, N,N-dimethylglycine, N-methylglycine, and glycine as well as its precursor choline were inactive. These results demonstrate that N,N,N-trimethylglycine, together with d-pinitol, serves as an stimulant of E. mandarina for oviposition on the leaves of A. julibrissin.
2 show abstract
2019-03-11
The original version of this article unfortunately contained some mistakes.
3 show abstract
2019-03-11

We report the identification of p-mentha-1,3-dien-8-ol, an unstable monoterpene alcohol, as a male-produced aggregation-sex pheromone component of the cerambycid beetle Paranoplium gracile (Leconte) (subfamily Cerambycinae, tribe Oemini), a species endemic to California. Headspace volatiles from live males contained a blend of nine cyclic terpenoids that were not detected in analogous samples from females. Volatiles produced by male Eudistenia costipennis Fall, also in the tribe Oemini, contained the same suite of nine compounds. Four compounds, dehydro-p-cymene, p-mentha-1,3-dien-8-ol, p,α,α-trimethylbenzyl alcohol, and an unidentified compound were found to elicit responses from antennae of P. gracile females in coupled gas chromatography-electroantennogram detection (GC-EAD) assays, whereas only p-mentha-1,3-dien-8-ol elicited responses from antennae of males. In field assays, p-mentha-1,3-dien-8-ol stabilized with the antioxidant butylated hydroxytoluene (BHT) attracted P. gracile of both sexes, indicating it functions as an aggregation-sex pheromone, as with other pheromones identified from its subfamily, the Cerambycinae. Adding four of the other compounds found in headspace samples to the dienol lure had no effect on attraction. Because of the instability of p-mentha-1,3-dien-8-ol, it seems likely that at least some of the compounds seen in the extracts of volatiles from both species are artefacts, rather than being components of the pheromone.
4 show abstract
2019-03-11

In nature, parasitoid wasps encounter and sometimes show oviposition behavior to nonhost species. However, little is known about the effect of such negative incidences on their subsequent host-searching behavior. We tested this effect in a tritrophic system of maize plants (Zea mays), common armyworms (hosts), tobacco cutworms (nonhosts), and parasitoid wasps, Cotesia kariyai. We used oviposition inexperienced C. kariyai and negative-experienced individuals that had expressed oviposition behavior toward nonhosts on nonhost-infested maize leaves. We first observed the olfactory behavior of C. kariyai to volatiles from host-infested plants or nonhost-infested plants in a wind tunnel. Negative-experienced wasps showed significantly lower rates of taking-off behavior (Step-1), significantly longer duration until landing (Step-2), and lower rates of landing behavior (Step-3) toward nonhost-infested plants than inexperienced wasps. However, the negative-experience did not affect these three steps toward host-infested plants. A negative experience appears to have negatively affected the olfactory responses to nonhost-infested plants. The chemical analyses suggested that the wasps associated (Z)-3-hexenyl acetate, a compound that was emitted more in nonhost-infested plants, with the negative experience, and reduced their response to nonhost-infested plants. Furthermore, we observed that the searching duration of wasps on either nonhost- or host-infested plants (Step-4) was reduced on both plant types after the negative experiences. Therefore, the negative experience in Step-4 would be nonadaptive for wasps on host-infested plants. Our study indicated that the density (i.e., possible encounters) of nonhost species as well as that of host species in the field should be considered when assessing the host-searching behavior of parasitoid wasps.
5 show abstract
2019-03-08
The original version of this article unfortunately contained some mistakes.
6 show abstract
2019-03-04

Many adult Chrysoperla comanche (Stephens) green lacewings were caught in traps baited with live yeast cultures during tests designed to catch olive fruit flies. All 13 yeast species tested were more attractive than the industry-standard dried torula yeast (Cyberlindnera jadinii; syn. Candida utilis). Live C. jadinii culture attracted significantly more lacewings than the inactive dried-pellet form of the same yeast species, demonstrating that volatiles from live yeast cultures attract adults of this lacewing. Odor profiles for two of the highly active yeasts tested herein (Lachancea thermotolerans and Solicoccozyma terrea) were similar to that for Metschnikowia pulcherrima, a yeast species isolated earlier from the gut diverticulum of Chrysoperla rufilabris. A new Metschnikowia species (M. chrysoperlae), along with two new Candida spp. that were recently realigned to one of the Metschnikowia clades (M. picachoensis and M. pimensis), were also identified from the diverticulum of C. comanche. Thus, one clade of Metschnikowia yeasts that commonly occur in floral nectar appears to exhibit mutualistic symbioses with Chrysoperla green lacewings. Both male and female C. comanche adults were attracted in the present study, and we speculate that males have exploited this symbiosis by offering Metschnikowia-laden regurgitant, including attractive volatiles, to females (‘mating trophallaxis’) as a nuptial gift.
7 show abstract
2019-03-02
The original version of this article unfortunately contained a mistake. The chemical structure of compound 6 in Fig. 1 was incorrect. The tested compound 6 in this study was (3S,8aS)-3-isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione as shown in the corrected version of Fig. 1 here.
8 show abstract
2019-03-02

Host-plant volatiles play a key role in finding mate and suitable host plants of phytophagous scarab beetles. Hence it is immensely important to collect and identify these volatiles. The gas chromatography coupled with electroantennographic detection (GC-EAD) technique has been used as a rapid and convenient tool for the identification of physiologically active components from plants. Here, we describe a practical method for electrophysiologically recording from lamellated antenna of scarab beetles. This method enables direct electroantennogram (EAG) recordings from antennal club without damage to the antenna in a similar manner to the conventional cut-tip EAG recording technique for clavate antenna. The headspace volatiles from walnut (Juglans regia L.) trees were collected with a Poropak-Q trap at dusk and then analyzed with GC-EAD. Those volatile compounds that elicited electrophysiological responses on the antennae of a scarab beetle, Metabolus flavescens Brenske (Coleoptera: Scarabeidae: Melolonthinae) were determined by means of gas chromatography-mass spectrometry (GC-MS). The lamella directly connected to the recording electrode was held apart from the other two lamellae on the antenna with a minuten pin and a disposable syringe needle. In order to improve electrical contact, a surfactant, Tween® 80, was used to lower the surface tension of Beadle-Ephrussi Ringer solution. This study demonstrated that addition of 0.05% Tween® 80 to the Beadle-Ephrussi Ringer solution suppressed baseline noise and assured significantly greater EAG response in general. Due to its simplicity and efficiency, this method may also be useful for studying the electrophysiology of other insect species having club-like antennae.
9 show abstract
2019-02-23

Two pine shoot beetles, Tomicus yunnanensis and Tomicus minor, are the most destructive pests of Pinus yunnanensis in southwestern China. We investigated behavioral responses within and between these two species during the shoot-feeding phase using walking bioassays. We also identified the pheromonal aspects of beetles by static solid phase microextraction (SPME) and hindgut extraction following interactive communication by gas chromatography-mass spectroscopy (GC-MS). Both species were significantly attracted by their own species and the same sex, and attraction was inhibited by exposure to additional beetles or to the hindgut extracts of beetles which had shown interaction. Female and male T. minor and T. yunnanensis hindguts contained 0.19, 0.09, 0.22, and 0.05 ng/individual of (−)-trans-verbenol, respectively; following interaction with additional beetles, this increased to 16.74–292.71 ng/individual in T. minor females. Mean concentration of verbenone detected in the hindguts of female/male individuals of T. minor and T. yunnanensis under natural conditions were 0.16, 0.06, 0.03, and 0.05 ng/individual, respectively, but these correspondingly increased to 5.90, 2.43, 0.06, and 0.19 ng/individual after exposure to additional insects. In T. yunnanensis, the amounts of detectable (−)-trans-verbenol and verbenone extracted from hindguts were lower than those from T. minor. The levels of cis-verbenol and (−)-trans-verbenol most attractive to walking T. yunnanensis and T. minor were 0.1 and 1.0 ng/μl, respectively. Verbenone was not attractive at any of the concentrations tested. The addition of verbenone to cis-verbenol or (−)-trans-verbenol reduced the attraction responses. We conclude that the (−)-trans-verbenol produced by these two pine shoot beetles is attractive at low concentrations and repellant at high concentrations, thereby fostering intraspecific competition. Verbenone is produced to prevent overcrowding via interspecific inhibition, and to expel beetles during shoot-feeding.
10 show abstract
2019-02-23

The bark beetle Polygraphus punctifrons (Coleoptera: Curculionidae) is a species that feeds on Norway spruce (Picea abies) and is found in the Northern parts of Europe and Russia. The release of volatile organic compounds (VOCs) produced by males and females of P. punctifrons when the beetles bore into spruce stem sections in a laboratory environment was studied using solid phase microextraction (SPME). The sampled VOCs emitted by boring beetles were analysed by gas chromatography and mass spectrometry (GCMS). (+)-2-[(1R,2S)-1-Methyl-2-(prop-1-en-2-yl)cyclobutyl]ethanol [(+)-(1R,2S)-grandisol] and (−)-(R)-1-isopropyl-4-methyl-3-cyclohexen-1-ol [(−)-(R)-terpinen-4-ol] were identified to be male specific volatiles. The identity of the compounds was confirmed by comparison with synthetic samples. Field trials with synthetic compounds in Sweden showed that racemic grandisol per se was strongly attractive for both males and females, while (−)-(R)-terpinen-4-ol was not. Further, when adding (−)-(R)-terpinen-4-ol to rac-grandisol, a synergistic effect was observed as the trap catch of P. punctifrons was fourfold. (−)-(R)-Terpinen-4-ol by its own did not attract P. punctifrons but Polygraphus poligraphus, and the latter was also attracted to traps baited with a 10:90 mixture of the two compounds. Thus, we have identified (+)-(1R,2S)-grandisol as a main component and (−)-(R)-terpinen-4-ol as a minor component of the aggregation pheromone of P. punctifrons. This opens future possibilities to monitor and, if necessary, manage populations of P. punctifrons.
11 show abstract
2019-02-22

Monarch butterflies, Danaus plexippus, migrate long distances over which they encounter host plants that vary broadly in toxic cardenolides. Remarkably little is understood about the mechanisms of sequestration in Lepidoptera that lay eggs on host plants ranging in such toxins. Using closely-related milkweed host plants that differ more than ten-fold in cardenolide concentrations, we mechanistically address the intake, sequestration, and excretion of cardenolides by monarchs. We show that on high cardenolide plant species, adult butterflies saturate in cardenolides, resulting in lower concentrations than in leaves, while on low cardenolide plants, butterflies concentrate toxins. Butterflies appear to focus their sequestration on particular compounds, as the diversity of cardenolides is highest in plant leaves, lower in frass, and least in adult butterflies. Among the variety of cardenolides produced by the plant, sequestered compounds may be less toxic to the butterflies themselves, as they are more polar on average than those in leaves. In accordance with this, results from an in vitro assay based on inhibition of Na+/K+ ATPase (the physiological target of cardenolides) showed that on two milkweed species, including the high cardenolide A. perennis, extracts from butterflies have lower inhibitory effects than leaves when standardized by cardenolide concentration, indicating selective sequestration of less toxic compounds from these host plants. To understand how ontogeny shapes sequestration, we examined cardenolide concentrations in caterpillar body tissues and hemolymph over the course of development. Caterpillars sequestered higher concentrations of cardenolides as early instars than as late instars, but within the fifth instar, concentration increased with body mass. Although it appears that large amounts of sequestration occurs in early instars, a host switching experiment revealed that caterpillars can compensate for feeding on low cardenolide host plants with substantial sequestration in the fifth instar. We highlight commonalities and striking differences in the mechanisms of sequestration depending on host plant chemistry and developmental stage, which have important implications for monarch defense.
12 show abstract
2019-02-22

Several hypotheses have been proposed to explain how herbivorous insects approach plants by sensing plant volatiles. Insect antennae and maxillary palps are believed to have crucial roles in the detection of host plant volatiles. However, few studies have assessed the roles of these olfactory organs in food selection in terms of the effects of individual volatile compounds from plants at various distances. Therefore, we assessed the palp-opening response (POR), biting response, and selection behavior of locust (Locusta migratoria) nymphs in response to volatile compounds from host and non-host plants at various distances. Thirty odorants were identified as the active volatiles to locust by the POR tests. At a distance of 3 m, locusts were attracted to a few common volatiles (1% v/v) of both host and non-host plants, while few components of volatiles acted as repellants at this distance. At a distance of 1 m, locusts responded more readily to volatile compounds. At a distance of 1 cm, locusts mainly used their palps to detect volatiles. However, some components that acted as attractants at long distances had no effect on the biting response at a short distance. Together, the results suggest that plant volatiles generally attract locust nymphs at long distances, but the effects are influenced by distance and concentration. Moreover, there are substantial functional differences in the use of antennae and palps for detecting volatiles at various distances. Overall, the mechanism of food selection by locusts via olfaction can be divided into several continuous ranges according to the sensitivities of the two chemosensory organs and the characteristics of the plant odorants.
13 show abstract
2019-02-21

Aggregation of the bean flower thrips, Megalurothrips sjostedti (Trybom) (Thysanoptera: Thripidae), has been observed on cowpea, Vigna unguiculata (L.) Walp. To understand the mechanism underpinning this behavior, we studied the responses of M. sjostedti to headspace volatiles from conspecifics in a four-arm olfactometer. Both male and female M. sjostedti were attracted to male, but not to female odor. Gas chromatography/mass spectrometry (GC/MS) analyses revealed the presence of two distinct compounds in male M. sjostedti headspace, namely (R)-lavandulyl 3-methylbutanoate (major compound) and (R)-lavandulol (minor compound); by contrast, both compounds were only present in trace amounts in female headspace collections. A behavioral assay using synthetic compounds showed that male M. sjostedti was attracted to both (R)-lavandulyl 3-methylbutanoate and (R)-lavandulol, while females responded only to (R)-lavandulyl 3-methylbutanoate. This is the first report of a male-produced aggregation pheromone in the genus Megalurothrips. The bean flower thrips is the primary pest of cowpea, which is widely grown in sub-Saharan Africa. The attraction of male and female M. sjostedti to these compounds offers an opportunity to develop ecologically sustainable management methods for M. sjostedti in Africa.
14 show abstract
2019-02-21

The specificity of woody plant defense responses to different attacking herbivores is poorly known. We investigated the responses of black poplar (Populus nigra) to leaf feeding by three lepidopteran species (Lymantria dispar, Laothoe populi and Amata mogadorensis) and two leaf beetle species (Phratora vulgatissima and Chrysomela populi). Of the direct defenses monitored, increases in trypsin protease inhibitor activity and the salicinoid salicin were triggered by herbivore damage, but this was not herbivore-specific. Moreover, the majority of leaf salicinoid content was present constitutively and not induced by herbivory. On the other hand, volatile emission profiles did vary among herbivore species, especially between coleopterans and lepidopterans. Monoterpenes and sesquiterpenes were induced in damaged and adjacent undamaged leaves, while the emission of green leaf volatiles, aromatic and nitrogen-containing compounds (known to attract herbivore enemies) was restricted to damaged leaves. In conclusion, indirect defenses appear to show more specific responses to attacking herbivores than direct defenses in this woody plant.
15 show abstract
2019-02-13

Deciphering the processes driving the evolution of the diverse pheromone-mediated chemical communication system of insects is a fascinating and challenging task. Understanding how pheromones have arisen has been supported by studies with the model organism Leptopilina heterotoma, a parasitoid wasp whose defensive compound (−)-iridomyrmecin also evolved as a component of the female sex pheromone and as a cue to avoid competition with other females during host search. To understand how compounds can evolve from being non-communicative to having a communicative function and to shed light on the evolution of the multi-functional use of iridomyrmecin in the genus Leptopilina, the chemical communication of two additional species, L. ryukyuensis and L. japonica, was studied. We demonstrate that in both species a species-specific mixture of iridoids is produced and emitted by wasps upon being attacked, consistent with their putative role as defensive compounds. In L. ryukyuensis these iridoids are also used by females to avoid host patches already exploited by other conspecific females. However, females of L. japonica do not avoid the odor of conspecific females during host search. We also show that the sex pheromone of female L. ryukyuensis consists of cuticular hydrocarbons (CHCs), as males showed strong courtship behavior (wing fanning) towards these compounds, but not towards the iridoid compounds. In contrast, males of L. japonica prefer their females’ iridoids but CHCs also elicit some courtship behavior. The use of iridoid compounds as defensive allomones seems to be common in the genus Leptopilina, while their communicative functions appear to have evolved in a species-specific manner.
16 show abstract
2019-02-12


Chelonus insularis (Hymenoptera: Braconidae) is an egg-larval endoparasitoid that attacks several lepidopteran species, including the fall armyworm (FAW), Spodoptera frugiperda, as one of its main hosts. In this study, we identified the volatiles emitted by maize plants undamaged and damaged by S. frugiperda larvae that were attractive to virgin C. insularis females. In a Y-glass tube olfactometer, parasitoid females were more attracted to activated charcoal extracts than Porapak Q maize extracts. Chemical analysis of activated charcoal extracts from maize plants damaged by S. frugiperda larvae by gas chromatography coupled with electroantennography (GC-EAD) showed that the antennae of virgin female wasps consistently responded to three compounds, identified by gas chromatography-mass spectrometry (GC-MS) as α-pinene, α-longipinene and α-copaene. These compounds are constitutively released by maize plants but induction via herbivory affects their emissions. α-Longipinene and α-copaene were more abundant in damaged maize plants than in healthy ones, whereas α-pinene was produced in higher amounts in healthy maize plants than in damaged ones. Female parasitoids were not attracted to EAD-active compounds when evaluated singly; however, they were attracted to the binary blend α-pinene + α-copaene, which was the most attractive blend, even more attractive than the tertiary blend (α-pinene + α-longipinene + α-copaene) and the damaged maize plant extracts. We conclude that C. insularis is attracted to a blend of herbivore-induced volatiles emitted by maize plants.
17 show abstract
2019-02-02
The original version of this article unfortunately contained a mistake. Under the heading “Insects” in “Methods and Materials” the sentence “A colony of N. viridula originated with field collections near Tifton, Georgia, USA” is incorrect.
18 show abstract
2019-02-01

Many species of longhorn beetles (Coleoptera: Cerambycidae) utilize male-produced aggregation-sex pheromones that attract both sexes. However, the reasons why and the details of how this type of pheromone is used by cerambycids and other coleopteran species that utilize analogous male-produced pheromones remain unclear. Thus, our goals were to test the hypotheses that 1) cerambycids respond to pheromones in a dose-dependent (= release rate-dependent) manner and 2) pheromone emission is density-dependent. If true, these characteristics of pheromone use could suggest that cerambycids utilize an optimal density strategy to limit competition for scarce and ephemeral hosts, i.e., the stressed or dying trees that typically constitute their larval hosts. Attraction of beetles to a range of release rates of two common pheromone components – 2-methylbutanol and 3-hydroxyhexan-2-one – was tested in field trials. Responses, as measured by the number of beetles caught in pheromone-baited traps, increased with release rates for five endemic species, even at the highest rates tested (~1450 μg/h for 2-methylbutanol and ~720 μg/h for 3-hydroxyhexan-2-one). The effect of density of conspecific males on per capita pheromone production was tested by collecting the volatiles produced by individuals, pairs, or groups of three or four male Phymatodes grandis Casey. Frequency of pheromone production was significantly different among the treatment densities, and emission rates of the pheromone (R)-2-methylbutanol decreased with increasing density. These results are discussed in the context of a possible optimal density strategy used by cerambycids, and more broadly, in relation to the use of male-produced aggregation-sex pheromones by other coleopterans. In addition, we report the identification of the pheromones of four of our five test species, specifically, Phymatodes obliquus Casey, Brothylus conspersus LeConte, Brothylus gemmulatus LeConte, and Xylotrechus albonotatus Casey.
19 show abstract
2019-02-01

Although crop wild ancestors are often reservoirs of resistance traits lost during domestication, examining diverse cultivated germplasm may also reveal novel resistance traits due to distinct breeding histories. Using ten cultivars from two independent domestication events of Cucurbita pepo (ssp. pepo and texana), we identified divergences in constitutive and induced resistance measured by growth of generalist caterpillars and leaf traits. C. p. texana cultivars were consistently more resistant to Trichoplusia ni and Spodoptera exigua, and this was not due to expected mechanisms including cucurbitacins, nitrogen, sticky phloem sap, or toxicity. Although more susceptible on average, C. p. pepo cultivars showed stronger induced resistance, suggesting a trade-off between constitutive and induced resistance. To test the hypothesis that leaf volatiles accounted for differences in resistance to caterpillars, we devised a novel method to evaluate resistance on artificial diet while larvae are exposed to leaf volatiles. In both subspecies, cultivar-specific induced volatiles that reduced T. ni growth were present in highly inducible cultivars, but absent in those that showed no induction. These results have important agricultural implications as cultivar-specific resistance to caterpillars mirrored that of specialist beetles from field trials. Overall, the eponymous cucurbitacin defenses of the Cucurbitaceae are not the mechanistic basis of differences in constitutive or induced resistance between C. pepo subspecies or cultivars. Instead, deterrent cultivar-specific volatiles appear to provide general resistance to insect herbivores. Divergence during breeding history within and between subspecies revealed this pattern and novel resistance mechanism, defining new targets for plant breeding.
20 show abstract
2019-01-26

Possessing toxins can contribute to an efficient defence against various threats in nature. However, we generally know little about the energy- and time-demands of developing toxicity in animals, which determines the efficiency of chemical defence and its trade-off with other risk-induced phenotypic responses. In this study we examined how immersion into norepinephrine solution inducing the release of stored toxins, administration of mild stress mimicking predator attack or simple handling during experimental procedure affected the quantity and number of toxin compounds present in common toad (Bufo bufo) tadpoles as compared to undisturbed control individuals, and investigated how fast toxin reserves were restored. We found that total bufadienolide quantity (TBQ) significantly decreased only in the norepinephrine treatment group immediately after treatment compared to the control, but this difference disappeared after 12 h; there were no consistent differences in TBQ between treatments at later samplings. Interestingly, in the norepinephrine treatment approximately half of the compounds characterized by >700 m/z values showed the same changes in time as TBQ, but several bufadienolides characterized by <600 m/z values showed the opposite pattern: they were present in higher quantities immediately after treatment. The number of bufadienolide compounds was not affected by any treatments, but was positively related to TBQ. Our study represents the first experimental evidence that toxin quantities returned to the original level following induced toxin release within a very short period of time in common toad tadpoles and provide additional insights into the physiological background of chemical defence in this model vertebrate species.

Green Open Access

Sherpa/Romeo info

Author can archive pre-print (ie pre-refereeing)
Author can archive post-print (ie final draft post-refereeing)
Author cannot archive publisher's version/PDF
  • Author's pre-print on pre-print servers such as arXiv.org
  • Author's post-print on author's personal website immediately
  • Author's post-print on any open access repository after 12 months after publication
  • Publisher's version/PDF cannot be used
  • Published source must be acknowledged
  • Must link to publisher version
  • Set phrase to accompany link to published version (see policy)
  • Articles in some journals can be made Open Access on payment of additional charge
  • Publisher last reviewed on 26/07/2016


More Sherpa/Romeo information

APC Discount

Researchers from RUG, UU, VU, UM, UL, WUR, EUR, RU, TU/e, TUD, UT, OU, TiU and UvA will receive a 100% discount on the Article Processing Charges that need to be paid by a first or corresponding author to publish open access in this journal.

More information on this Springer Open Choice deal.

This deal is valid until 2021-12-31.

More information on Open Access publishing

Last updated: 2019-01-14

Impact

Journal Citation Reports (2017)

Impact factor: 2.419
Q2 (Ecology (62/158))
Q3 (Biochemistry & Molecular Biology (183/292))

Scopus Journal Metrics (2017)

SJR: 1.168
SNIP: 0.977
Impact (Scopus CiteScore): 0.231
Quartile: Q1
CiteScore percentile: 78%
CiteScore rank: 121 out of 561
Cited by WUR staff: 662 times. (2014-2016)

Similar journals  

 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.