WUR Journal browser

WUR Journal browser

  • external user (warningwarning)
  • Log in as
  • The Journal Browser provides a list of more than 30,000 journals. It can be consulted by authors who wish to select a journal for publishing their manuscript Open Access. The information in this list is aggregated from several sources on a regular basis:

    • A list of journals for which the Association of Universities in the Netherlands (VSNU) has made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of Dutch universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs).
    • A list of journals covered by the Journal Citation Reports.
    • A list of journals covered by Scopus.
    • Journals indexed in the Directory of Open Access Journals (DOAJ).
    • Lists of journals for which specific Dutch universities have made deals with publishers, to make articles Open Access. Under these deals, corresponding authors of these universities can publish their articles Open Access in the participating journals with discounts on the article processing charges (APCs). Depending on the university from which the Journal Browser is consulted, this information is shown.
    • Additional data on citations made to journals, in articles published by staff from a specific Dutch university, that are made available by that university. Depending on the university from which the Journal Browser is consulted, this information is shown.

    In the Journal Browser, a search box can be used to look up journals on certain subjects. The terms entered in this box are used to search the journal titles and other metadata (e.g. keywords).

    After having selected journals by subject, it is possible to apply additional filters. These concern no/full costs and discounts for Open Access publishing, support on Open Access publishing in journals, and the quartile to which the journal’s impact factor belongs.

    When one selects a journal in the Journal Browser, the following information may be presented:

    • General information about the selected journal such as title and ISSNs, together with a link to the journal’s website.
    • APC discount that holds for the selected journal if it is part of an Open Access deal.
    • Impact measures for the selected journal from Journal Citation Reports or Scopus. The impact measures that are shown may vary, depending on the university from which the Journal Browser is consulted. For some universities, the number of citations made to the selected journal (in articles published by staff from that university) is also shown.
    • Information from Sherpa/Romeo on the conditions under which articles from the selected journal may be made available via Green Open Access.
    • A listing of articles recently published in the selected journal.
    • For some universities, information is available on what journals have been co-cited most frequently together with the selected journal (in articles published by staff from these universities). When available, this information is presented under ‘similar journals’.

Journal of Biological Chemistry

American Society for Biochemistry and Molecular Biology Inc.


ISSN: 0021-9258 (1067-8816, 1083-351X)
Biochemistry & Molecular Biology - Biochemistry - Molecular Biology - Cell Biology
APC costs unknown

Recent articles

1 show abstract
Channelrhodopsins (ChRs) are light-gated ion channels in widespread use in neuroscience for mediating the genetically targetable optical control of neurons (optogenetics). ChRs pass multiple kinds of ions, and although nonspecific ChR-mediated conductance is not an issue in many neuroscience studies, conductance of calcium and protons, which can mediate diverse cellular signals, may be undesirable in some instances. Here, we turned our attention to the creation of ChRs that have high cation photocurrent but pass fewer calcium ions and protons. We developed an automated, time-resolved screening method capable of rapidly phenotyping channelrhodopsin-2 (ChR2) variants. We found substitution mutations throughout ChR2 that could boost current while altering ion selectivity and observed that the mutations that reduced calcium or proton conductance have additive effects. By combining four mutations, we obtained a ChR, ChromeQ, with improved photocurrent that possesses order-of-magnitude reductions in calcium and proton conductance and high fidelity in driving repetitive action potentials in neurons. The approach presented here offers a viable pathway toward customization of complex physiological properties of optogenetic tools. We propose that our screening method not only enables elucidation of new ChR variants that affect microbial opsin performance but may also reveal new principles of optogenetic protein engineering.
2 show abstract
The development of genetically engineered proteins that can control cell excitability with light have revolutionized our understanding of the nervous system. The most widely used of these optogenetic tools is the light-gated ion channel, channelrhodopsin 2 (ChR2). A new study by Cho et al. describes the development of ChR2 variants with improved photocurrents and more selective ion permeability using an automated multifaceted fluorescence-based screening. This methodological framework holds promise not only in refining features of ChR2, but also for other proteins in which fluorescence phenotyping is possible.
3 show abstract
Phagocyte NADPH oxidase produces superoxide anions, a precursor of reactive oxygen species (ROS) critical for host responses to microbial infections. However, uncontrolled ROS production contributes to inflammation, making NADPH oxidase a major drug target. It consists of two membranous (Nox2 and p22phox) and three cytosolic subunits (p40phox, p47phox, and p67phox) that undergo structural changes during enzyme activation. Unraveling the interactions between these subunits and the resulting conformation of the complex could shed light on NADPH oxidase regulation and help identify inhibition sites. However, the structures and the interactions of flexible proteins comprising several well-structured domains connected by intrinsically disordered protein segments are difficult to investigate by conventional techniques such as X-ray crystallography, NMR, or cryo-EM. Here, we developed an analytical strategy based on FRET–fluorescence lifetime imaging (FLIM) and fluorescence cross-correlation spectroscopy (FCCS) to structurally and quantitatively characterize NADPH oxidase in live cells. We characterized the inter- and intramolecular interactions of its cytosolic subunits by elucidating their conformation, stoichiometry, interacting fraction, and affinities in live cells. Our results revealed that the three subunits have a 1:1:1 stoichiometry and that nearly 100% of them are present in complexes in living cells. Furthermore, combining FRET data with small-angle X-ray scattering (SAXS) models and published crystal structures of isolated domains and subunits, we built a 3D model of the entire cytosolic complex. The model disclosed an elongated complex containing a flexible hinge separating two domains ideally positioned at one end of the complex and critical for oxidase activation and interactions with membrane components.
4 show abstract
Cantharidin (CTD) is a potent anticancer small molecule produced by several species of blister beetle. It has been a traditional medicine for the management of warts and tumors for many decades. CTD suppresses tumor growth by inducing apoptosis, cell cycle arrest, and DNA damage and inhibits protein phosphatase 2 phosphatase activator (PP2A) and protein phosphatase 1 (PP1). CTD also alters lipid homeostasis, cell wall integrity, endocytosis, adhesion, and invasion in yeast cells. In this study, we identified additional molecular targets of CTD using a Saccharomyces cerevisiae strain that expresses a cantharidin resistance gene (CRG1), encoding a SAM-dependent methyltransferase that methylates and inactivates CTD. We found that CTD specifically affects phosphatidylethanolamine (PE)-associated functions that can be rescued by supplementing the growth media with ethanolamine (ETA). CTD also perturbed endoplasmic reticulum (ER) homeostasis and cell wall integrity by altering the sorting of glycosylphosphatidylinositol (GPI)-anchored proteins. A CTD-dependent genetic interaction profile of CRG1 revealed that the activity of the lipid phosphatase cell division control protein 1 (Cdc1) in GPI-anchor remodeling is the key target of CTD, independently of PP2A and PP1 activities. Moreover, experiments with human cells further suggested that CTD functions through a conserved mechanism in higher eukaryotes. Altogether, we conclude that CTD induces cytotoxicity by targeting Cdc1 activity in GPI-anchor remodeling in the ER.
5 show abstract
The nonlysosomal glucosylceramidase β2 (GBA2) catalyzes the hydrolysis of glucosylceramide to glucose and ceramide. Mutations in the human GBA2 gene have been associated with hereditary spastic paraplegia (HSP), autosomal-recessive cerebellar ataxia (ARCA), and the Marinesco-Sjögren–like syndrome. However, the underlying molecular mechanisms are ill-defined. Here, using biochemistry, immunohistochemistry, structural modeling, and mouse genetics, we demonstrate that all but one of the spastic gait locus #46 (SPG46)-connected mutations cause a loss of GBA2 activity. We demonstrate that GBA2 proteins form oligomeric complexes and that protein–protein interactions are perturbed by some of these mutations. To study the pathogenesis of GBA2-related HSP and ARCA in vivo, we investigated GBA2-KO mice as a mammalian model system. However, these mice exhibited a high phenotypic variance and did not fully resemble the human phenotype, suggesting that mouse and human GBA2 differ in function. Whereas some GBA2-KO mice displayed a strong locomotor defect, others displayed only mild alterations of the gait pattern and no signs of cerebellar defects. On a cellular level, inhibition of GBA2 activity in isolated cerebellar neurons dramatically affected F-actin dynamics and reduced neurite outgrowth, which has been associated with the development of neurological disorders. Our results shed light on the molecular mechanism underlying the pathogenesis of GBA2-related HSP and ARCA and reveal species-specific differences in GBA2 function in vivo.
6 show abstract
Since I started doing scientific research, I've been fascinated by the interplay of protein structure and dynamics and how they together mediate protein function. A particular area of interest has been in understanding the mechanistic basis of how lipid-signaling enzymes function on membrane surfaces. In this award lecture article, I will describe my laboratory's studies on the structure and dynamics of lipid-signaling enzymes on membrane surfaces. This is important, as many lipid-signaling enzymes are regulated through dynamic regulatory mechanisms that control their enzymatic activity. This article will discuss my continued enthusiasm in using a synergistic application of hydrogen–deuterium exchange MS (HDX–MS) with other structural biology techniques to probe the mechanistic basis for how membrane-localized signaling enzymes are regulated and how these approaches can be used to understand how they are misregulated in disease. I will discuss specific examples of how we have used HDX–MS to study phosphoinositide kinases and the protein kinase Akt. An important focus will be on a description of how HDX–MS can be used as a powerful tool to optimize the design of constructs for X-ray crystallography and EM. The use of a diverse toolbox of biophysical methods has revealed novel insight into the complex and varied regulatory networks that control the function of lipid-signaling enzymes and enabled unique insight into the mechanics of membrane recruitment.
7 show abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. Long noncoding RNAs (lncRNAs) are a class of noncoding transcripts of> 200 nucleotides and are increasingly recognized as playing functional roles in physiology and disease. ANRIL is an lncRNA gene mapped to the chromosome 9p21 genetic locus for CAD identified by the first series of genome-wide association studies (GWAS). However, ANRIL's role in CAD and the underlying molecular mechanism are unknown. Here, we show that the major ANRIL transcript in endothelial cells (ECs) is DQ485454 with a much higher expression level in ECs than in THP-1 monocytes. Of note, DQ485454 expression was down-regulated in CAD coronary arteries compared with non-CAD arteries. DQ485454 overexpression significantly reduced monocyte adhesion to ECs, transendothelial monocyte migration (TEM), and EC migration, which are critical cellular processes involved in CAD initiation, whereas siRNA-mediated ANRIL knockdown (KD) had the opposite effect. Microarray and follow-up quantitative RT-PCR analyses revealed that the ANRIL KD down-regulated expression of AHNAK2, CLIP1, CXCL11, ENC1, EZR, LYVE1, WASL, and TNFSF10 genes and up-regulated TMEM100 and TMEM106B genes. Mechanistic studies disclosed that overexpression of CLIP1, EZR, and LYVE1 reversed the effects of ANRIL KD on monocyte adhesion to ECs, TEM, and EC migration. These findings indicate that ANRIL regulates EC functions directly related to CAD, supporting the hypothesis that ANRIL is involved in CAD pathogenesis at the 9p21 genetic locus and identifying a molecular mechanism underlying lncRNA-mediated regulation of EC function and CAD development.
8 show abstract
N-Nitroso compounds (NOCs) are common DNA-alkylating agents, are abundantly present in food and tobacco, and can also be generated endogenously. Metabolic activation of some NOCs can give rise to carboxymethylation and pyridyloxobutylation/pyridylhydroxybutylation of DNA, which are known to be carcinogenic and can lead to gastrointestinal and lung cancer, respectively. Herein, using the competitive replication and adduct bypass (CRAB) assay, along with MS- and NMR-based approaches, we assessed the cytotoxic and mutagenic properties of three O6-alkyl-2′-deoxyguanosine (O6-alkyl-dG) adducts, i.e. O6-pyridyloxobutyl-dG (O6-POB-dG) and O6-pyridylhydroxybutyl-dG (O6-PHB-dG), derived from tobacco-specific nitrosamines, and O6-carboxymethyl-dG (O6-CM-dG), induced by endogenous N-nitroso compounds. We also investigated two neutral analogs of O6-CM-dG, i.e. O6-aminocarbonylmethyl-dG (O6-ACM-dG) and O6-hydroxyethyl-dG (O6-HOEt-dG). We found that, in Escherichia coli cells, these lesions mildly (O6-POB-dG), moderately (O6-PHB-dG), or strongly (O6-CM-dG, O6-ACM-dG, and O6-HOEt-dG) impede DNA replication. The strong blockage effects of the last three lesions were attributable to the presence of hydrogen-bonding donor(s) located on the alkyl functionality of these lesions. Except for O6-POB-dG, which also induced a low frequency of G → T transversions, all other lesions exclusively stimulated G → A transitions. SOS-induced DNA polymerases played redundant roles in bypassing all the O6-alkyl-dG lesions investigated. DNA polymerase IV (Pol IV) and Pol V, however, were uniquely required for inducing the G → A transition for O6-CM-dG exposure. Together, our study expands our knowledge about the recognition of important NOC-derived O6-alkyl-dG lesions by the E. coli DNA replication machinery.
9 show abstract
DNA polymerase θ (POLQ) plays an important role in alternative nonhomologous end joining or microhomology-mediated end joining (alt-NHEJ/MMEJ). Here, we show that POLQ is not only required for MMEJ to repair DNA double-strand breaks (DSBs) generated by endonucleases such as I-SceI or Cas9, but is also needed for repair of DSBs derived from DNA nicks generated by Cas9 nickase. Consistently, we found that POLQ deficiency leads to sensitivity to topoisomerase inhibitors that cause DNA single-strand break (SSB) accumulation at replication forks and to ATR inhibitors that induce replication fork collapse. These studies support the function of POLQ in coping with replication stress and repairing DSBs upon fork collapse. POLQ overexpression is present in many cancer types and is associated with poor prognosis, including breast cancer regardless of BRCA1 status. We provide proof-of-concept evidence to support a novel cancer treatment strategy that combines POLQ inhibition with administration of topoisomerase or ATR inhibitors, which induces replication stress and fork collapse. Given the prevalence of POLQ overexpression in tumors, such strategy may have a significant impact on developing targeted cancer treatment.
10 show abstract
Brain injury–mediated induction of reactive astrocytes often leads to glial scar formation in damaged brain regions. Activation of signal transducer and activator of transcription 3 (STAT3), a member of the STAT family of transcription factors, plays a pivotal role in inducing reactive astrocytes and glial scar formation. Endothelin-1 (ET-1) is a vasoconstrictor peptide, and its levels increase in brain disorders and promote astrocytic proliferation through ETB receptors. To clarify the mechanisms underlying ET-1–mediated astrocytic proliferation, here we examined its effects on STAT3 in cultured rat astrocytes. ET-1 treatment stimulated Ser-727 phosphorylation of STAT3 in the astrocytes, but Tyr-705 phosphorylation was unaffected, and ET-induced STAT3 Ser-727 phosphorylation was reduced by the ETB antagonist BQ788. ET-1 stimulated STAT3 binding to its consensus DNA-binding motifs. Monitoring G1/S phase cell cycle transition through bromodeoxyuridine (BrdU) incorporation, we found that ET-1 increases BrdU incorporation into the astrocytic nucleus, indicating cell cycle progression. Of note, STAT3 chemical inhibition (with stattic or 5,15-diphenyl-porphine (5,15-DPP)) or siRNA-mediated STAT3 silencing reduced ET-induced BrdU incorporation. Moreover, ET-1 increased astrocytic expression levels of cyclin D1 and S-phase kinase-associated protein 2 (SKP2), which were reduced by stattic, 5,15-DPP, and STAT3 siRNA. ChIP-based PCR analysis revealed that ET-1 promotes the binding of SAT3 to the 5′-flanking regions of rat cyclin D1 and SKP2 genes. Our results suggest that STAT3-mediated regulation of cyclin D1 and SKP2 expression underlies ET-induced astrocytic proliferation.
11 show abstract
Genetically encoded calcium indicators (GECIs) are useful reporters of cell-signaling, neuronal, and network activities. We have generated novel fast variants and investigated the kinetic mechanisms of two recently developed red-fluorescent GECIs (RGECIs), mApple-based jRGECO1a and mRuby-based jRCaMP1a. In the formation of fluorescent jRGECO1a and jRCaMP1a complexes, calcium binding is followed by rate-limiting isomerization. However, fluorescence decay of calcium-bound jRGECO1a follows a different pathway from its formation: dissociation of calcium occurs first, followed by the peptide, similarly to GCaMP-s. In contrast, fluorescence decay of calcium-bound jRCaMP1a occurs by the reversal of the on-pathway: peptide dissociation is followed by calcium. The mechanistic differences explain the generally slower off-kinetics of jRCaMP1a-type indicators compared with GCaMP-s and jRGECO1a-type GECI: the fluorescence decay rate of f-RCaMP1 was 21 s−1, compared with 109 s−1 for f-RGECO1 and f-RGECO2 (37 °C). Thus, the CaM–peptide interface is an important determinant of the kinetic responses of GECIs; however, the topology of the structural link to the fluorescent protein demonstrably affects the internal dynamics of the CaM–peptide complex. In the dendrites of hippocampal CA3 neurons, f-RGECO1 indicates calcium elevation in response to a 100 action potential train in a linear fashion, making the probe particularly useful for monitoring large-amplitude, fast signals, e.g. those in dendrites, muscle cells, and immune cells.
12 show abstract
Human DNA polymerase δ is essential for DNA replication and acts in conjunction with the processivity factor proliferating cell nuclear antigen (PCNA). In addition to its catalytic subunit (p125), pol δ comprises three regulatory subunits (p50, p68, and p12). PCNA interacts with all of these subunits, but only the interaction with p68 has been structurally characterized. Here, we report solution NMR–, isothermal calorimetry–, and X-ray crystallography–based analyses of the p12–PCNA interaction, which takes part in the modulation of the rate and fidelity of DNA synthesis by pol δ. We show that p12 binds with micromolar affinity to the classical PIP-binding pocket of PCNA via a highly atypical PIP box located at the p12 N terminus. Unlike the canonical PIP box of p68, the PIP box of p12 lacks the conserved glutamine; binds through a 2-fork plug made of an isoleucine and a tyrosine residue at +3 and +8 positions, respectively; and is stabilized by an aspartate at +6 position, which creates a network of intramolecular hydrogen bonds. These findings add to growing evidence that PCNA can bind a diverse range of protein sequences that may be broadly grouped as PIP-like motifs as has been previously suggested.
13 show abstract
Centrins (CETN1–4) are ubiquitous and conserved EF-hand–family Ca2+-binding proteins associated with the centrosome, basal body, and transition zone. Deletion of CETN1 or CETN2 in mice causes male infertility or dysosmia, respectively, without affecting photoreceptor function. However, it remains unclear to what extent centrins are redundant with each other in photoreceptors. Here, to explore centrin redundancy, we generated Cetn3GT/GT single-knockout and Cetn2−/−;Cetn3GT/GT double-knockout mice. Whereas the Cetn3 deletion alone did not affect photoreceptor function, simultaneous ablation of Cetn2 and Cetn3 resulted in attenuated scotopic and photopic electroretinography (ERG) responses in mice at 3 months of age, with nearly complete retina degeneration at 1 year. Removal of CETN2 and CETN3 activity from the lumen of the connecting cilium (CC) destabilized the photoreceptor axoneme and reduced the CC length as early as postnatal day 22 (P22). In Cetn2−/−;Cetn3GT/GT double-knockout mice, spermatogenesis-associated 7 (SPATA7), a key organizer of the photoreceptor-specific distal CC, was depleted gradually, and CETN1 was condensed to the mid-segment of the CC. Ultrastructural analysis revealed that in this double knockout, the axoneme of the CC expanded radially at the distal end, with vertically misaligned outer segment discs and membrane whorls. These observations suggest that CETN2 and CETN3 cooperate in stabilizing the CC/axoneme structure.
14 show abstract
Hypoxia-inducible factor 2α (HIF2α) directly regulates a battery of genes essential for intestinal iron absorption. Interestingly, iron deficiency and overload disorders do not result in increased intestinal expression of glycolytic or angiogenic HIF2α target genes. Similarly, inflammatory and tumor foci can induce a distinct subset of HIF2α target genes in vivo. These observations indicate that different stimuli activate distinct subsets of HIF2α target genes via mechanisms that remain unclear. Here, we conducted a high-throughput siRNA-based screen to identify genes that regulate HIF2α's transcriptional activity on the promoter of the iron transporter gene divalent metal transporter-1 (DMT1). SMAD family member 3 (SMAD3) and SMAD4 were identified as potential transcriptional repressors. Further analysis revealed that SMAD4 signaling selectively represses iron-absorptive gene promoters but not the inflammatory or glycolytic HIF2α or HIF1α target genes. Moreover, the highly homologous SMAD2 did not alter HIF2α transcriptional activity. During iron deficiency, SMAD3 and SMAD4 expression was significantly decreased via proteasomal degradation, allowing for derepression of iron target genes. Several iron-regulatory genes contain a SMAD-binding element (SBE) in their proximal promoters; however, mutation of the putative SBE on the DMT1 promoter did not alter the repressive function of SMAD3 or SMAD4. Importantly, the transcription factor forkhead box protein A1 (FOXA1) was critical in SMAD4-induced DMT1 repression, and DNA binding of SMAD4 was essential for the repression of HIF2α activity, suggesting an indirect repressive mechanism through DNA binding. These results provide mechanistic clues to how HIF signaling can be regulated by different cellular cues.
15 show abstract
Phycoerythrin (PE) is a green light–absorbing protein present in the light-harvesting complex of cyanobacteria and red algae. The spectral characteristics of PE are due to its prosthetic groups, or phycoerythrobilins (PEBs), that are covalently attached to the protein chain by specific bilin lyases. Only two PE lyases have been identified and characterized so far, and the other bilin lyases are unknown. Here, using in silico analyses, markerless deletion, biochemical assays with purified and recombinant proteins, and site-directed mutagenesis, we examined the role of a putative lyase-encoding gene, cpeF, in the cyanobacterium Fremyella diplosiphon. Analyzing the phenotype of the cpeF deletion, we found that cpeF is required for proper PE biogenesis, specifically for ligation of the doubly linked PEB to Cys-48/Cys-59 residues of the CpeB subunit of PE. We also show that in a heterologous host, CpeF can attach PEB to Cys-48/Cys-59 of CpeB, but only in the presence of the chaperone-like protein CpeZ. Additionally, we report that CpeF likely ligates the A ring of PEB to Cys-48 prior to the attachment of the D ring to Cys-59. We conclude that CpeF is the bilin lyase responsible for attachment of the doubly ligated PEB to Cys-48/Cys-59 of CpeB and together with other specific bilin lyases contributes to the post-translational modification and assembly of PE into mature light-harvesting complexes.
16 show abstract
Mitochondria are attractive therapeutic targets for developing agents to delay age-related frailty and diseases. However, few promising leads have been identified from natural products. Previously, we identified roseltide rT1, a hyperstable 27-residue cysteine-rich peptide from Hibiscus sabdariffa, as a knottin-type neutrophil elastase inhibitor. Here, we show that roseltide rT1 is also a cell-penetrating, mitochondria-targeting peptide that increases ATP production. Results from flow cytometry, live-cell imaging, pulldown assays, and genetically-modified cell lines supported that roseltide rT1 enters cells via glycosaminoglycan-dependent endocytosis, and enters the mitochondria through TOM20, a mitochondrial protein import receptor. We further showed that roseltide rT1 increases cellular ATP production via mitochondrial membrane hyperpolarization. Using biotinylated roseltide rT1 for target identification and proteomic analysis, we showed that human mitochondrial membrane ATP synthase subunit O is an intramitochondrial target. Collectively, these data support our discovery that roseltide rT1 is a first-in-class mitochondria-targeting, cysteine-rich peptide with potentials to be developed into tools to further our understanding of mitochrondria-related diseases.
17 show abstract
The neutral amino acid transporter solute carrier family 1 member 5 (SLC1A5 or ASCT2) is overexpressed in many cancers. To identify its roles in tumors, we employed 143B osteosarcoma cells and HCC1806 triple-negative breast cancer cells with or without ASCT2 deletion. ASCT2ko 143B cells grew well in standard culture media, but ASCT2 was required for optimal growth at
18 show abstract
As complications associated with antibiotic resistance have intensified, copper (Cu) is attracting attention as an antimicrobial agent. Recent studies have shown that copper surfaces decrease microbial burden, and host macrophages use Cu to increase bacterial killing. Not surprisingly, microbes have evolved mechanisms to tightly control intracellular Cu pools and protect against Cu toxicity. Here, we identified two genes (copB and copL) encoded within the Staphylococcus aureus arginine-catabolic mobile element (ACME) that we hypothesized function in Cu homeostasis. Supporting this hypothesis, mutational inactivation of copB or copL increased copper sensitivity. We found that copBL are co-transcribed and that their transcription is increased during copper stress and in a strain in which csoR, encoding a Cu-responsive transcriptional repressor, was mutated. Moreover, copB displayed genetic synergy with copA, suggesting that CopB functions in Cu export. We further observed that CopL functions independently of CopB or CopA in Cu toxicity protection and that CopL from the S. aureus clone USA300 is a membrane-bound and surface-exposed lipoprotein that binds up to four Cu+ ions. Solution NMR structures of the homologous Bacillus subtilis CopL, together with phylogenetic analysis and chemical-shift perturbation experiments, identified conserved residues potentially involved in Cu+ coordination. The solution NMR structure also revealed a novel Cu-binding architecture. Of note, a CopL variant with defective Cu+ binding did not protect against Cu toxicity in vivo. Taken together, these findings indicate that the ACME-encoded CopB and CopL proteins are additional factors utilized by the highly successful S. aureus USA300 clone to suppress copper toxicity.
19 show abstract
The metastasis suppressor, N-Myc downstream-regulated gene-1 (NDRG1) inhibits a plethora of oncogenic signaling pathways by down-regulating the epidermal growth factor receptor (EGFR). Herein, we examined the mechanism involved in NDRG1-mediated EGFR down-regulation. NDRG1 overexpression potently increased the levels of mitogen-inducible gene 6 (MIG6), which inhibits EGFR and facilitates its lysosomal processing and degradation. Conversely, silencing NDRG1 in multiple human cancer cell types decreased MIG6 expression, demonstrating the regulatory role of NDRG1. Further, NDRG1 overexpression facilitated MIG6–EGFR association in the cytoplasm, possibly explaining the significantly (p
20 show abstract
Glucuronoxylanases are endo-xylanases and members of the glycoside hydrolase family 30 subfamilies 7 (GH30-7) and 8 (GH30-8). Unlike for the well-studied GH30-8 enzymes, the structural and functional characteristics of GH30-7 enzymes remain poorly understood. Here, we report the catalytic properties and three-dimensional structure of GH30-7 xylanase B (Xyn30B) identified from the cellulolytic fungus Talaromyces cellulolyticus. Xyn30B efficiently degraded glucuronoxylan to acidic xylooligosaccharides (XOSs), including an α-1,2-linked 4-O-methyl-d-glucuronosyl substituent (MeGlcA). Rapid analysis with negative-mode electrospray-ionization multistage MS (ESI(−)-MSn) revealed that the structures of the acidic XOS products are the same as those of the hydrolysates (MeGlcA2Xyln, n> 2) obtained with typical glucuronoxylanases. Acidic XOS products were further degraded by Xyn30B, releasing first xylobiose and then xylotetraose and xylohexaose as transglycosylation products. This hydrolase reaction was unique to Xyn30B, and the substrate was cleaved at the xylobiose unit from its nonreducing end, indicating that Xyn30B is a bifunctional enzyme possessing both endo-glucuronoxylanase and exo-xylobiohydrolase activities. The crystal structure of Xyn30B was determined as the first structure of a GH30-7 xylanase at 2.25 Å resolution, revealing that Xyn30B is composed of a pseudo-(α/β)8-catalytic domain, lacking an α6 helix, and a small β-rich domain. This structure and site-directed mutagenesis clarified that Arg46, conserved in GH30-7 glucuronoxylanases, is a critical residue for MeGlcA appendage–dependent xylan degradation. The structural comparison between Xyn30B and the GH30-8 enzymes suggests that Asn93 in the β2–α2 loop is involved in xylobiohydrolase activity. In summary, our findings indicate that Xyn30B is a bifunctional endo- and exo-xylanase.
21 show abstract
G protein–coupled receptors (GPCRs) are currently the target of more than 30% of the marketed medicines. However, there is an important medical need for ligands with improved pharmacological activities on validated drug targets. Moreover, most of these ligands remain poorly characterized, notably because of a lack of pharmacological tools. Thus, there is an important demand for innovative assays that can detect and drive the design of compounds with novel or improved pharmacological properties. In particular, a functional and screening-compatible GPCR–G protein interaction assay is still unavailable. Here, we report on a nanoluciferase-based complementation technique to detect ligands that promote a GPCR–G protein interaction. We demonstrate that our system can be used to profile compounds with regard to the G proteins they activate through a given GPCR. Furthermore, we established a proof of applicability of screening for distinct G proteins on dopamine receptor D2 whose differential coupling to Gαi/o family members has been extensively studied. In a D2–Gαi1 versus D2–Gαo screening, we retrieved five agonists that are currently being used in antiparkinsonian medications. We determined that in this assay, piribedil and pergolide are full agonists for the recruitment of Gαi1 but are partial agonists for Gαo, that the agonist activity of ropinirole is biased in favor of Gαi1 recruitment, and that the agonist activity of apomorphine is biased for Gαo. We propose that this newly developed assay could be used to develop molecules that selectively modulate a particular G protein pathway.
22 show abstract
mTORC1 regulates protein synthesis and in turn is regulated by growth factors, energy status, and amino acid availability. In kidney cell (HEK293-T) culture, the GAP activity toward RAG (GATOR1) protein complex suppresses activation of the RAG A/B–RAG C/D heterodimer when amino acids are insufficient. During amino acid sufficiency, the RAG heterodimer recruits mTORC1 to the lysosomal membrane where its interaction with Ras homolog enriched in brain (Rheb) stimulates mTORC1's kinase activity. The DEP domain containing 5 (DEPDC5) protein, a GATOR1 subunit, causes familial focal epilepsy when mutated, and global knockout of the Depdc5 gene is embryonically lethal. To study the function of DEPDC5 in skeletal muscle, we generated a muscle-specific inducible Depdc5 knockout mouse, hypothesizing that knocking out Depdc5 in muscle would make mTORC1 constitutively active, causing hypertrophy and improving muscle function. Examining mTORC1 signaling, morphology, mitochondrial respiratory capacity, contractile function, and applied physical function (e.g. rotarod, treadmill, grip test, and wheel running), we observed that mTORC1 activity was significantly higher in knockout (KO) mice, indicated by the increased phosphorylation of mTOR and its downstream effectors (by 118% for p-mTOR/mTOR, 114% for p-S6K1/S6K1, and 35% for p-4E-BP1/4E-BP1). The KO animals also exhibited soleus muscle cell hypertrophy and a 2.5-fold increase in mitochondrial respiratory capacity. However, contrary to our hypothesis, neither physical nor contractile function improved. In conclusion, DEPDC5 depletion in adult skeletal muscle removes GATOR1 inhibition of mTORC1, resulting in muscle hypertrophy and increased mitochondrial respiration, but does not improve overall muscle quality and function.
23 show abstract
Pathways linking activation of the insulin receptor to downstream targets of insulin have traditionally been studied using a candidate gene approach. To elucidate additional pathways regulating insulin activity, we performed a forward chemical–genetics screen based on translocation of a glucose transporter 4 (Glut4) reporter expressed in murine 3T3-L1 adipocytes. To identify compounds with known targets, we screened drug-repurposing and natural product libraries. We identified, confirmed, and validated 64 activators and 65 inhibitors that acutely increase or rapidly decrease cell-surface Glut4 in adipocytes stimulated with submaximal insulin concentrations. These agents were grouped by target, chemical class, and mechanism of action. All groups contained multiple hits from a single drug class, and several comprised multiple structurally unrelated hits for a single target. Targets include the β-adrenergic and adenosine receptors. Agonists of these receptors increased and inverse agonists/antagonists decreased cell-surface Glut4 independently of insulin. Additional activators include insulin sensitizers (thiazolidinediones), insulin mimetics, dis-inhibitors (the mTORC1 inhibitor rapamycin), cardiotonic steroids (the Na+/K+-ATPase inhibitor ouabain), and corticosteroids (dexamethasone). Inhibitors include heterocyclic amines (tricyclic antidepressants) and 21 natural product supplements and herbal extracts. Mechanisms of action include effects on Glut4 trafficking, signal transduction, inhibition of protein synthesis, and dissipation of proton gradients. Two pathways that acutely regulate Glut4 translocation were discovered: de novo protein synthesis and endocytic acidification. The mechanism of action of additional classes of activators (tanshinones, dalbergiones, and coumarins) and inhibitors (flavonoids and resveratrol) remains to be determined. These tools are among the most sensitive, responsive, and reproducible insulin-activity assays described to date.
24 show abstract
TGFβ signaling via SMAD proteins and protein kinase pathways up- or down-regulates the expression of many genes and thus affects physiological processes, such as differentiation, migration, cell cycle arrest, and apoptosis, during developmental or adult tissue homeostasis. We here report that NUAK family kinase 1 (NUAK1) and NUAK2 are two TGFβ target genes. NUAK1/2 belong to the AMP-activated protein kinase (AMPK) family, whose members control central and protein metabolism, polarity, and overall cellular homeostasis. We found that TGFβ-mediated transcriptional induction of NUAK1 and NUAK2 requires SMAD family members 2, 3, and 4 (SMAD2/3/4) and mitogen-activated protein kinase (MAPK) activities, which provided immediate and early signals for the transient expression of these two kinases. Genomic mapping identified an enhancer element within the first intron of the NUAK2 gene that can recruit SMAD proteins, which, when cloned, could confer induction by TGFβ. Furthermore, NUAK2 formed protein complexes with SMAD3 and the TGFβ type I receptor. Functionally, NUAK1 suppressed and NUAK2 induced TGFβ signaling. This was evident during TGFβ-induced epithelial cytostasis, mesenchymal differentiation, and myofibroblast contractility, in which NUAK1 or NUAK2 silencing enhanced or inhibited these responses, respectively. In conclusion, we have identified a bifurcating loop during TGFβ signaling, whereby transcriptional induction of NUAK1 serves as a negative checkpoint and NUAK2 induction positively contributes to signaling and terminal differentiation responses to TGFβ activity.
25 show abstract
Mitochondrial single-stranded DNA (ssDNA)–binding proteins (mtSSBs) are required for mitochondrial DNA replication and stability and are generally assumed to form homotetramers, and this species is proposed to be the one active for ssDNA binding. However, we recently reported that the mtSSB from Saccharomyces cerevisiae (ScRim1) forms homotetramers at high protein concentrations, whereas at low protein concentrations, it dissociates into dimers that bind ssDNA with high affinity. In this work, using a combination of analytical ultracentrifugation techniques and DNA binding experiments with fluorescently labeled DNA oligonucleotides, we tested whether the ability of ScRim1 to form dimers is unique among mtSSBs. Although human mtSSBs and those from Schizosaccharomyces pombe, Xenopus laevis, and Xenopus tropicalis formed stable homotetramers, the mtSSBs from Candida albicans and Candida parapsilosis formed stable homodimers. Moreover, the mtSSBs from Candida nivariensis and Candida castellii formed tetramers at high protein concentrations, whereas at low protein concentrations, they formed dimers, as did ScRim1. Mutational studies revealed that the ability to form either stable tetramers or dimers depended on a complex interplay of more than one amino acid at the dimer–dimer interface and the C-terminal unstructured tail. In conclusion, our findings indicate that mtSSBs can adopt different oligomeric states, ranging from stable tetramers to stable dimers, and suggest that a dimer of mtSSB may be a physiologically relevant species that binds to ssDNA in some yeast species.
26 show abstract
After reacting with hydrogen peroxide (H2O2), sickle-cell hemoglobin (HbS, βE6V) remains longer in a highly oxidizing ferryl form (HbFe4+=O) and induces irreversible oxidation of “hot-spot” amino acids, including βCys-93. To control the damaging ferryl heme, here we constructed three HbS variants. The first contained a redox-active Tyr in β subunits (F41Y), a substitution present in Hb Mequon; the second contained the Asp (K82D) found in the β cleft of Hb Providence; and the third had both of these β substitutions. Both the single Tyr-41 and Asp-82 constructs lowered the oxygen affinity of HbS but had little or no effects on autoxidation or heme loss kinetics. In the presence of H2O2, both rHbS βF41Y and βF41Y/K82D enhanced ferryl Hb reduction by providing a pathway for electrons to reduce the heme via the Tyr-41 side chain. MS analysis of βCys-93 revealed moderate inhibition of thiol oxidation in the HbS single F41Y variant and dramatic 3- to 8-fold inhibition of cysteic acid formation in rHbS βK82D and βF41Y/K82D, respectively. Under hypoxia, βK82D and βF41Y/K82D HbS substitutions increased the delay time by ∼250 and 600 s before the onset of polymerization compared with the rHbS control and rHbS βF41Y, respectively. Moreover, at 60 °C, rHbS βK82D exhibited superior structural stability. Asp-82 also enhanced the function of Tyr as a redox-active amino acid in the rHbS βF41Y/K82D variant. We conclude that the βK82D and βF41Y substitutions add significant resistance to oxidative stress and anti-sickling properties to HbS and therefore could be potential genome-editing targets.
27 show abstract
Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation, but the underlying ionic mechanism for this association remains unclear. We recently reported that expression of the small-conductance calcium-activated potassium channel 2 (SK2, encoded by KCCN2) in atria from diabetic mice is significantly down-regulated, resulting in reduced SK currents in atrial myocytes from these mice. We also reported that the level of SK2 mRNA expression is not reduced in DM atria but that the ubiquitin-proteasome system (UPS), a major mechanism of intracellular protein degradation, is activated in vascular smooth muscle cells in DM. This suggests a possible role of the UPS in reduced SK currents. To test this possibility, we examined the role of the UPS in atrial SK2 down-regulation in DM. We found that a muscle-specific E3 ligase, F-box protein 32 (FBXO-32, also called atrogin-1), was significantly up-regulated in diabetic mouse atria. Enhanced FBXO-32 expression in atrial cells significantly reduced SK2 protein expression, and siRNA-mediated FBXO-32 knockdown increased SK2 protein expression. Furthermore, co-transfection of SK2 with FBXO-32 complementary DNA in HEK293 cells significantly reduced SK2 expression, whereas co-transfection with atrogin-1ΔF complementary DNA (a nonfunctional FBXO-32 variant in which the F-box domain is deleted) did not have any effects on SK2. These results indicate that FBXO-32 contributes to SK2 down-regulation and that the F-box domain is essential for FBXO-32 function. In conclusion, DM-induced SK2 channel down-regulation appears to be due to an FBXO-32-dependent increase in UPS-mediated SK2 protein degradation.
28 show abstract
The liver X receptors Lxrα/NR1H3 and Lxrβ/NR1H2 are ligand-dependent nuclear receptors critical for midbrain dopaminergic (mDA) neuron development. We found previously that 24(S),25-epoxycholesterol (24,25-EC), the most potent and abundant Lxr ligand in the developing mouse midbrain, promotes mDA neurogenesis in vitro. In this study, we demonstrate that 24,25-EC promotes mDA neurogenesis in an Lxr-dependent manner in the developing mouse midbrain in vivo and also prevents toxicity induced by the Lxr inhibitor geranylgeranyl pyrophosphate. Furthermore, using MS, we show that overexpression of human cholesterol 24S-hydroxylase (CYP46A1) increases the levels of both 24(S)-hydroxycholesterol (24-HC) and 24,25-EC in the developing midbrain, resulting in a specific increase in mDA neurogenesis in vitro and in vivo, but has no effect on oculomotor or red nucleus neurogenesis. 24-HC, unlike 24,25-EC, did not affect in vitro neurogenesis, indicating that the neurogenic effect of 24,25-EC on mDA neurons is specific. Combined, our results indicate that increased levels of 24,25-EC in vivo, by intracerebroventricular delivery in WT mice or by overexpression of its biosynthetic enzyme CYP46A1, specifically promote mDA neurogenesis. We propose that increasing the levels of 24,25-EC in vivo may be a useful strategy to combat the loss of mDA neurons in Parkinson's disease.
29 show abstract
Ubiquitin-specific protease 7 (USP7) regulates various cellular pathways through its deubiquitination activity. Despite the identification of a growing number of substrates of USP7, the molecular mechanism by which USP7 removes ubiquitin chains from polyubiquitinated substrates remains unexplored. The present study investigated the mechanism underlying the deubiquitination of Lys63-linked polyubiquitinated proliferating cell nuclear antigen (PCNA). Biochemical analyses demonstrated that USP7 efficiently removes polyubiquitin chains from polyubiquitinated PCNA by preferential cleavage of the PCNA-ubiquitin linkage. This property was largely attributed to the poor activity toward Lys63-linked ubiquitin chains. The preferential cleavage of substrate-ubiquitin linkages was also observed for Lys48-linked polyubiquitinated p53 because of the inefficient cleavage of the Lys48-linked ubiquitin chains. The present findings suggest a mechanism underlying the removal of polyubiquitin signals by USP7.
30 show abstract
Autophagy is an intracellular degradation pathway that transports cytoplasmic material to the lysosome for hydrolysis. It is completed by SNARE-mediated fusion of the autophagosome and endolysosome membranes. This process must be carefully regulated to maintain the organization of the membrane system and prevent mistargeted degradation. As yet, models of autophagosomal fusion have not been verified within a cellular context because of difficulties with assessing protein interactions in situ. Here, we used high-resolution fluorescence lifetime imaging (FLIM)-FRET of HeLa cells to identify protein interactions within the spatiotemporal framework of the cell. We show that autophagosomal syntaxin 17 (Stx17) heterotrimerizes with synaptosome-associated protein 29 (SNAP29) and vesicle-associated membrane protein 7 (VAMP7) in situ, highlighting a functional role for VAMP7 in autophagosome clearance that has previously been sidelined in favor of a role for VAMP8. Additionally, we identified multimodal regulation of SNARE assembly by the Sec1/Munc18 (SM) protein VPS33A, mirroring other syntaxin–SM interactions and therefore suggesting a unified model of SM regulation. Contrary to current theoretical models, we found that the Stx17 N-peptide appears to interact in a positionally conserved, but mechanistically divergent manner with VPS33A, providing a late “go, no-go” step for autophagic fusion via a phosphoserine master-switch. Our findings suggest that Stx17 fusion competency is regulated by a phosphosite in its N-peptide, representing a previously unknown regulatory step in mammalian autophagy.
31 show abstract
Iron efflux from mammalian cells is supported by the synergistic actions of the ferrous iron efflux transporter, ferroportin (Fpn) and a multicopper ferroxidase, that is, hephaestin (Heph), ceruloplasmin (Cp) or both. The two proteins stabilize Fpn in the plasma membrane and catalyze extracellular Fe3+ release. The membrane stabilization of Fpn is also stimulated by its interaction with a 22-amino acid synthetic peptide based on a short sequence in the extracellular E2 domain of the amyloid precursor protein (APP). However, whether APP family members interact with Fpn in vivo is unclear. Here, using cyan fluorescent protein (CFP)-tagged Fpn in conjunction with yellow fluorescent protein (YFP) fusions of Heph and APP family members APP, APLP1, and APLP2 in HEK293T cells we used fluorescence and surface biotinylation to quantify Fpn membrane occupancy and also measured 59Fe efflux. We demonstrate that Fpn and Heph co-localize, and FRET analysis indicated that the two proteins form an iron-efflux complex. In contrast, none of the full-length, cellular APP proteins exhibited Fpn co-localization or FRET. Moreover, iron supplementation increased surface expression of the iron-efflux complex, and copper depletion knocked down Heph activity and decreased Fpn membrane localization. Whereas cellular APP species had no effects on Fpn and Heph localization, addition of soluble E2 elements derived from APP and APLP2, but not APLP1, increased Fpn membrane occupancy. We conclude that a ferroportin-targeting sequence, (K/R)EWEE, present in APP and APLP2, but not APLP1, helps modulate Fpn-dependent iron efflux in the presence of an active multicopper ferroxidase.
32 show abstract
Aggregation of α-synuclein (αSN) is implicated in neuronal degeneration in Parkinson's disease and has prompted searches for natural compounds inhibiting αSN aggregation and reducing its tendency to form toxic oligomers. Oil from the olive tree (Olea europaea L.) represents the main source of fat in the Mediterranean diet and contains variable levels of phenolic compounds, many structurally related to the compound oleuropein. Here, using αSN aggregation, fibrillation, size-exclusion chromatography–multiangle light scattering (SEC-MALS)-based assays, and toxicity assays, we systematically screened the fruit extracts of 15 different olive varieties to identify compounds that can inhibit αSN aggregation and oligomer toxicity and also have antioxidant activity. Polyphenol composition differed markedly among varieties. The variety with the most effective antioxidant and aggregation activities, Koroneiki, combined strong inhibition of αSN fibril nucleation and elongation with strong disaggregation activity on preformed fibrils and prevented the formation of toxic αSN oligomers. Fractionation of the Koroneiki extract identified oleuropein aglycone, hydroxyl oleuropein aglycone, and oleuropein as key compounds responsible for the differences in inhibition across the extracts. These phenolic compounds inhibited αSN amyloidogenesis by directing αSN monomers into small αSN oligomers with lower toxicity, thereby suppressing the subsequent fibril growth phase. Our results highlight the molecular consequences of differences in the level of effective phenolic compounds in different olive varieties, insights that have implications for long-term human health.
33 show abstract
The length of linker DNA that separates nucleosomes is highly variable, but its mechanistic role in modulating chromatin structure and functions remains unknown. Here, we established an experimental system using circular arrays of positioned nucleosomes to investigate whether variations in nucleosome linker length could affect nucleosome folding, self-association, and interactions. We conducted EM, DNA topology, native electrophoretic assays, and Mg2+-dependent self-association assays to study intrinsic folding of linear and circular nucleosome arrays with linker DNA length of 36 bp and 41 bp (3.5 turns and 4 turns of DNA double helix, respectively). These experiments revealed that potential artifacts arising from open DNA ends and full DNA relaxation in the linear arrays do not significantly affect overall chromatin compaction and self-association. We observed that the 0.5 DNA helical turn difference between the two DNA linker lengths significantly affects DNA topology and nucleosome interactions. In particular, the 41-bp linkers promoted interactions between any two nucleosome beads separated by one bead as expected for a zigzag fiber, whereas the 36-bp linkers promoted interactions between two nucleosome beads separated by two other beads and also reduced negative superhelicity. Monte Carlo simulations accurately reproduce periodic modulations of chromatin compaction, DNA topology, and internucleosomal interactions with a 10-bp periodicity. We propose that the nucleosome spacing and associated chromatin structure modulations may play an important role in formation of different chromatin epigenetic states, thus suggesting implications for how chromatin accessibility to DNA-binding factors and the RNA transcription machinery is regulated.
34 show abstract
Cluster of differentiation 38 (CD38) is the best-studied enzyme catalyzing the synthesis of the Ca2+ messenger cyclic ADP-ribose. It is a single-pass transmembrane protein, but possesses dual orientations. We have documented the natural existence of type III CD38 in cells and shown that it is regulated by a cytosolic activator, calcium- and integrin-binding 1 (CIB1). However, how type III CD38 can be folded correctly in the reductive cytosol has not been addressed. Using the yeast two-hybrid technique with CD38's catalytic domain (sCD38) as bait, here we identified a chaperone, Hsp70-interacting protein (Hip), that specifically interacts with both the type III CD38 and sCD38. Immunoprecipitation coupled with MS identified a chaperone complex associated specifically with sCD38. Pharmacological and siRNA-mediated knockdown of Hsp90 chaperones decreased the expression levels of both sCD38 and type III CD38, suggesting that these chaperones facilitate their folding. Moreover, knockdown of Hsc70 or DNAJA2 increased the levels of both CD38 types, consistent with the roles of these proteins in mediating CD38 degradation. Notably, Hip knockdown decreased type III CD38 substantially, but only marginally affected sCD38, indicating that Hip was selective for the former. More remarkably, DNAJA1 knockdown decreased sCD38 but increased type III CD38 levels. Mechanistically, we show that Hsc70 mediates lysosomal degradation of type III CD38, requiring the lysosomal receptor Lamp2A and the C19-motif in the C terminus of CD38. Our results indicate that folding and degradation of type III CD38 is effectively controlled in cells, providing further strong support of its physiological relevance.
35 show abstract
Norovirus infections are a major cause of acute viral gastroenteritis and a significant burden on global human health. A vital process for norovirus replication is the processing of the nonstructural polyprotein by a viral protease into the viral components required to form the viral replication complex. This cleavage occurs at different rates, resulting in the accumulation of stable precursor forms. Here, we characterized how precursor forms of the norovirus protease accumulate during infection. Using stable forms of the protease precursors, we demonstrated that all of them are proteolytically active in vitro, but that when expressed in cells, their activities are determined by both substrate and protease localization. Although all precursors could cleave a replication complex-associated substrate, only a subset of precursors lacking the NS4 protein were capable of efficiently cleaving a cytoplasmic substrate. By mapping the full range of protein–protein interactions among murine and human norovirus proteins with the LUMIER assay, we uncovered conserved interactions between replication complex members that modify the localization of a protease precursor subset. Finally, we demonstrate that fusion to the membrane-bound replication complex components permits efficient cleavage of a fused substrate when active polyprotein-derived protease is provided in trans. These findings offer a model for how norovirus can regulate the timing of substrate cleavage throughout the replication cycle. Because the norovirus protease represents a key target in antiviral therapies, an improved understanding of its function and regulation, as well as identification of interactions among the other nonstructural proteins, offers new avenues for antiviral drug design.
36 show abstract
Dietary, fructose-containing sugars have been strongly associated with the development of nonalcoholic fatty liver disease (NAFLD). Recent studies suggest that fructose also can be produced via the polyol pathway in the liver, where it may induce hepatic fat accumulation. Moreover, fructose metabolism yields uric acid, which is highly associated with NAFLD. Here, using biochemical assays, reporter gene expression, and confocal fluorescence microscopy, we investigated whether uric acid regulates aldose reductase, a key enzyme in the polyol pathway. We evaluated whether soluble uric acid regulates aldose reductase expression both in cultured hepatocytes (HepG2 cells) and in the liver of hyperuricemic rats and whether this stimulation is associated with endogenous fructose production and fat accumulation. Uric acid dose-dependently stimulated aldose reductase expression in the HepG2 cells, and this stimulation was associated with endogenous fructose production and triglyceride accumulation. This stimulatory mechanism was mediated by uric acid–induced oxidative stress and stimulation of the transcription factor nuclear factor of activated T cells 5 (NFAT5). Uric acid also amplified the effects of elevated glucose levels to stimulate hepatocyte triglyceride accumulation. Hyperuricemic rats exhibited elevated hepatic aldose reductase expression, endogenous fructose accumulation, and fat buildup that was significantly reduced by co-administration of the xanthine oxidase inhibitor allopurinol. These results suggest that uric acid generated during fructose metabolism may act as a positive feedback mechanism that stimulates endogenous fructose production by stimulating aldose reductase in the polyol pathway. Our findings suggest an amplifying mechanism whereby soft drinks rich in glucose and fructose can induce NAFLD.

Green Open Access

Sherpa/Romeo info

Author can archive pre-print (ie pre-refereeing)
Author can archive post-print (ie final draft post-refereeing)
Author can (with restrictions) archive publisher's version/PDF
  • Authors retain copyright, effective with manuscripts initially submitted on or after January 1, 2018
  • Author's pre-print on not-for-profit server
  • Author's post-print on author's personal website or institutional repository
  • Publisher's version/PDF may be used after a 12 months embargo period
  • Must link to publisher version
  • Set phrase to accompany deposit (See policy)
  • Publisher automatically deposits articles in PubMed Central after a 12 months embargo period
  • Publisher last contacted on 21/07/2016

More Sherpa/Romeo information

APC Discount

For this journal no deals have been made concerning APC discount

More information on Open Access publishing


Journal Citation Reports (2017)

Impact factor: 4.010
Q2 (Biochemistry & Molecular Biology (75/292))

Scopus Journal Metrics (2017)

SJR: 2.672
SNIP: 1.085
Impact (Scopus CiteScore): 0.404
Quartile: Q1
CiteScore percentile: 84%
CiteScore rank: 62 out of 398
Cited by WUR staff: 1842 times. (2014-2016)

Similar journals  

Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.