Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 302918
Title Relationship between cavitation and water uptake in rose stems
Author(s) Doorn, W.G. van; Suiro, V.
Source Physiologia Plantarum 96 (1996)2. - ISSN 0031-9317 - p. 305 - 311.
DOI https://doi.org/10.1034/j.1399-3054.1996.960221.x
Department(s) Agrotechnological Research Institute
Publication type Refereed Article in a scientific journal
Publication year 1996
Abstract Cavitation in rose stems (Rosa hybrida L.) was assessed in both intact plants and excised flowers, by measurement of ultrasonic acoustic emissions at the stem surface and determination of the air-conductivity of 2.5-cm segments that were attached at one end to air at low pressure (0.01 MPa). On sunny days the stems of intact rose plants showed acoustic emissions and conductivity to air, starting early in the morning. In Cara Mia and Sonia rose plants the cavitations were repaired during the late afternoon; in Madelon plants this repair only occurred overnight. Water flow was seriously impaired in stems of Cara Mia roses cut around midday, on sunny days. During dehydration of cut roses in air the onset of a high rate of acoustic emissions coincided with a low rate of water uptake when stems were subsequently placed in water. High emission frequency occurred after 2.4 ± 0.7 h, 6.8 ± 4.3 h and 19.8 ± 9.0 h of exposure to air in Cara Mia, Madelon and Sonia roses, respectively. A low rate of water uptake in excised stems placed in water was found after 3-4, 9-12 and 24-36 h of desiccation in air, respectively. The onset of the high emission frequency corresponded with a water potential of -1.7, -2.9 and -3.8 MPa in the three cultivars, respectively. It is concluded that a high number of cavitations may occur in noncut stems of rose plants, leading to low water uptake immediately after excision, depending on the weather and the cultivar, and that the low rate of water uptake after a period of dry storage, among the three rose cultivars investigated, is correlated with the presence of a high number of cavitated xylem elements.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.