Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 312466
Title Cloning and characterization of the Yarrowia lipolytica squalene synthase (SQS1) gene and functional complementation of the Saccharomyces cerevisiae erg9 mutation
Author(s) Merkulov, S.; Assema, F. van; Springer, J.; Carmen, A.F. del; Mooibroek, H.
Source Yeast 16 (2000)3. - ISSN 0749-503X - p. 197 - 206.
DOI http://dx.doi.org/10.1002/(SICI)1097-0061(200002)16:3<197::AID-YEA513>3.0.CO;2-L
Department(s) Agrotechnological Research Institute
Publication type Refereed Article in a scientific journal
Publication year 2000
Abstract The squalene synthase (SQS) gene encodes a key regulatory enzyme, farnesyl-diphosphate farnesyltransferase (EC 2.5.1.21), in sterol biosynthesis. The SQS1 gene was isolated from a subgenomic library of the industrially important yeast Yarrowia lipolytica, using PCR-generated probes. Probes were based on conserved regions of homologues from different organisms. The complete nucleotide sequence of the coding region and the corresponding amino acid sequence were determined. The sequences showed extensive homologies with squalene synthase genes and enzymes from a number of other organisms and extreme amino acid conservation within the binding and catalytic domains. Direct cloning of a 4.3 kb genomic Y. lipolytica fragment, also comprising its own promoter and terminator sequences, into autonomously replicating plasmid YEp352 and subsequent transformation of a Saccharomyces cerevisiae mutant strain with relevant erg9: ura3-1 markers, resulted in functional complementation of these deficiencies, although Northern blot analyses did not reveal a unique full-length messenger. The availability of the Y. lipolytica SQS1 gene (GenBank Accession No. AF092497) offers prospects for metabolic engineering of the isoprenoid and sterol biosynthetic pathways.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.