Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 317514
Title Zenith total delay study of a mesoscale convective system : GPS observations and fine-scale modelling
Author(s) Cucurull, I.; Vilà-Guerau de Arellano, J.; Rius, A.
Source Tellus Series A: Dynamic Meteorology and Oceanography 54A (2002)2. - ISSN 0280-6495 - p. 138 - 147.
Department(s) Meteorology and Air Quality
Publication type Refereed Article in a scientific journal
Publication year 2002
Abstract Zenith Total Delay (ZTD) observations and model calculations are used to analyze a mesoscale convective system which yielded a large amount of precipitation over a short period of time in the north-western Mediterranean. ZTD observations are derived from the GPS signal delay whereas the ZTD model results are calculated by means of the MM5 mesoscale model. Large values of the root-mean-square (rms) differences between the ZTD derived from the observations and the modeling are found for the maximum activity of the mesoscale convective system. It appears that the average bias between observations and modeling results is slightly affected (20%) by the passage of the storm system which is associated to the water vapor variability of the atmosphere. We have analyzed the ZTD differences in terms of the two components: the Zenith Hydrostatic Delay (ZHD) and the Zenith Wet Delay (ZWD). The hydrostatic error is mainly caused by the differences between the elevation of the GPS stations and the model topography and is reduced when using a more accurate topography data set. We propose a correction for this error assuming hydrostatic equilibrium. The remaining average ZTD difference is associated to the ZWD and is mainly generated by inaccuracies of the mesoscale model to predict the water vapor content during the rainfall event.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.