Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 318342
Title Seed vigor, aging, and osmopriming affect anion and sugar leakage during imbition of maize (Zea mays L.) caryopses
Author(s) Ouyang, X.R.; Voorthuysen, T. van; Toorop, P.; Hilhorst, H.W.M.
Source International Journal of Plant Sciences 163 (2002). - ISSN 1058-5893 - p. 107 - 112.
DOI http://dx.doi.org/10.1086/324550
Department(s) Laboratory of Plant Physiology
EPS
Publication type Refereed Article in a scientific journal
Publication year 2002
Abstract Conductivity was significantly increased by aging and decreased by osmopriming of maize (Zea mays L.) caryopses. Chloride, phosphate, and sulfate were the main anions that leaked out of maize seeds; their leakage was closely related to conductivity, increased by aging, and decreased by osmopriming. The anion leakage of isolated embryos correlated closely to seed vigor and was more sensitive to aging and priming than that of the whole seed. Anion leakage may be a more sensitive measure for seed vigor than bulk conductivity readings. Aging did not increase the sugar leakage of whole seeds but significantly increased the sugar leakage of isolated embryos. Sugar leakage was not closely related to total soluble sugar content of seeds. While priming decreased seed conductivity, the decreased anion and sugar leakage of the primed seeds was mainly caused by the washing effect during priming. The total anions or sugars left in the polyethylene glycol (PEG) solution after priming and in the conductivity solution of the primed seeds was almost the same as in the conductivity solution of the unprimed seeds alone.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.