Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 319892
Title Analysing crop yield and plant quality in an intercropping system using an ecophysiological model for interplant competition
Author(s) Baumann, D.T.; Bastiaans, L.; Goudriaan, J.; Laar, H.H. van; Kropff, M.J.
Source Agricultural Systems 73 (2002). - ISSN 0308-521X - p. 173 - 203.
DOI http://dx.doi.org/10.1016/S0308-521X(01)00084-1
Department(s) Crop and Weed Ecology
Plant Production Systems
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2002
Abstract An eco-physiological model was used to improve understanding of interplant competition based on physiological, morphological and phenological processes. The model was parameterised based on characteristics of the plants in monocultures and its performance was evaluated for the crop mixtures using experimental data from different growing seasons. A light interception routine accounting for row-geometry was compared to a routine assuming a homogeneous horizontal leaf area distribution. The models simulated the light distribution among the species equally well. The production of the two crops in the mixture was accurately simulated using parameter values based on monoculture growth characteristics. Morphological characteristics of the species such as the relative growth rate of leaf area during early growth and specific leaf area largely determined the competitive strength of the species. Dry matter production of the species, particularly if grown in mixture, was highly sensitive to maximum plant height and radiation use efficiency. Celery was found to be a stronger competitor than leek and clear responses of quality characteristics to plant density in monoculture and mixtures were observed. The model was used to determine ranges of plant densities that enable the intercropping system to meet current quality standards of the component crops.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.