Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 343318
Title Interactions of phenolic compounds with globular proteins and their effects on food-related functional properties
Author(s) Prigent, S.V.E.
Source Wageningen University. Promotor(en): Fons Voragen; Harry Gruppen, co-promotor(en): G.A. van Koningsveld. - Wageningen : - ISBN 9085042674 - 132
Department(s) Food Chemistry Group
VLAG
Publication type Dissertation, internally prepared
Publication year 2005
Keyword(s) globulinen - eiwitten - fenolverbindingen - chlorogeenzuur - interacties - fysicochemische eigenschappen - fysische eigenschappen - voedsel - globulins - proteins - phenolic compounds - chlorogenic acid - interactions - physicochemical properties - physical properties - food
Categories Chemistry of Food Components
Abstract In order to modulate the functional properties of food proteins, the interactions between globular proteins and the monomeric phenolic, caffeoylquinic acid (CQA, chlorogenic acid), and the oligomeric phenolics, procyanidins, were characterized and investigated for their effect on protein functional properties. Non-covalent interactions between proteins and CQA involved a low affinity and did not affect protein solubility. Proteins show a medium affinity for procyanidins of an average degree of polymerization (DP) of 5.5, but weakly interacted with smaller procyanidins. Procyanidins of DP 5.5 strongly decreased protein solubility. Covalent interactions between proteins and CQA oxidised by polyphenol oxidase (PPO) or oxidised at alkaline pH resulted in protein modification mainly via dimeric CQA quinones. The covalent modifications of proteins with CQA strongly reduced protein solubility. Lysine, tyrosine, histidine and tryptophan were able to interact with CQA quinones. It can be concluded that for food non-covalent interactions are restricted to oligomeric phenolic.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.