Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 347184
Title Determination of land surface temperature and soil moisture from Tropical Rainfall Measuring Mission/Microwave Imager remote sensing data
Author(s) Wen, J.; Su, Z.; Ma, Y.
Source Journal of Geophysical Research: Atmospheres 108 (2003)D2. - ISSN 2169-897X - p. 4038 - 4038.
DOI https://doi.org/10.1029/2002JD002176
Department(s) Centre Geo-information
ALTERRA Wageningen UR
Publication type Refereed Article in a scientific journal
Publication year 2003
Keyword(s) microwave emission - vegetation - polarization - field
Abstract An analytical algorithm for the determination of land surface temperature and soil moisture from the Tropical Rainfall Measuring Mission/Microwave Imager (TRMM/TMI) remote sensing data has been developed in this study. The error analyses indicate that the uncertainties of the enrolled parameters will not cause serious errors in the proposed algorithm. By applying the proposed algorithm to TRMM/TMI remote sensing data collected during the Global Energy and Water Experiment (GEWEX) Asian Monsoon Experiment (GAME)/Tibet Intensive Observation Period field campaign in 1998 (IOP'98), the temporal and regional distributions of land surface temperature and volumetric soil moisture are evaluated over the central Tibetan plateau area. To validate the proposed method, the ground-measured surface temperature and volumetric soil moisture are compared to TRMM/TMI-derived land surface temperature and soil Fresnel reflectivity respectively. The results show that the estimated surface temperature is in good agreement with ground measurements; their difference and correlation coefficient are 0.52 ± 2.41 K and 0.80, respectively. A quasi-linear relationship exists between estimated Fresnel reflectivity and ground-measured volumetric soil moisture with a correlation coefficient 0.82. The land surface thermal status can also be clearly identified from the regional distribution of the estimated land surface temperature; the mountainous area and water bodies have a very lower surface temperature, while the river basin shows a higher surface temperature compared to the mountainous area. The southeastern part of the selected area has lower soil moisture, while the river basin exhibits high soil moisture. It is therefore concluded that the proposed algorithm is successful for the retrieval of land surface temperature and soil moisture using TRMM/TMI data over the study area.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.