Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 347885
Title Low-temperature-related growth and photosynthetic performance of alloplasmic tomato (Lycopersicon esculentum Mill.) with chloroplasts from L. hirsutum Humb. & Bonpl.
Author(s) Dolstra, O.; Venema, J.H.; Groot, P.J.; Hasselt, P.R. van
Source Euphytica 124 (2002)3. - ISSN 0014-2336 - p. 407 - 421.
DOI https://doi.org/10.1023/A:1015705032705
Department(s) PRI Biodiversity and Breeding
Publication type Refereed Article in a scientific journal
Publication year 2002
Keyword(s) chlorophyll fluorescence - nucleocytoplasmic incompatibility - low-light - tolerance - genome - plastome - plants - cybrid - cold - peruvianum
Abstract Growth and photosynthetic performance were analyzed in alloplasmic tomato at a high- (25/17 °C; HTR) and low-temperature regime (12/6 °C; LTR) in order to establish the role of cytoplasmic variation on low-temperature tolerance of tomato (Lycopersicon esculentum Mill.). Four alloplasmic tomato lines, containing the nuclear genome of tomato and the plastome of L. hirsutum LA 1777 Humb. & Bonpl., an accession collected at high-altitude in Peru, were reciprocally crossed with 11 tomato entries with a high inbreeding level and a wide genetic variation, resulting in a set of 44 reciprocal crosses. Irrespective of growth temperature, alloplasmic families with alien chloroplasts of L. hirsutum (h) were on average characterized by a high shoot biomass, a large leaf area, and a low specific leaf area in comparison with their euplasmic counterparts. These results do not directly point to an advantageous effect of h-chloroplasts on biomass accumulation at low temperature but rather towards a small general beneficial effect on growth and/or distribution of assimilates. Significant chloroplast-related differences in photosynthetic performance, however, were not detected at both temperature regimes, indicating that h-chloroplasts can properly function in a variable nuclear background of L. esculentum. It is concluded that chloroplast substitution is not an effective method for breeding tomato plants with improved low-temperature tolerance
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.