Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 353738
Title Structure of the Redox Sensor Domain of Azotobacter vinelandii NifL at Atomic Resolution: Signaling, Dimerization, and Mechanism.
Author(s) Key, J.; Hefti, M.H.; Purcell, E.B.; Moffat, K.
Source Biochemistry 46 (2007)12. - ISSN 0006-2960 - p. 3614 - 3623.
DOI https://doi.org/10.1021/bi0620407
Department(s) Biochemistry
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2007
Keyword(s) plant photoreceptor domain - hypoxia-inducible factor - nitrogen-fixation genes - binding protein nifa - pas domain - oxygen sensor - crystal-structure - escherichia-coli - in-vitro - adiantum phytochrome3
Abstract NifL is a multidomain sensor protein responsible for the transcriptional regulation of genes involved in response to changes in cellular redox state and ADP concentration. Cellular redox is monitored by the N-terminal PAS domain of NifL which contains an FAD cofactor. Flavin-based PAS domains of this type have also been referred to as LOV domains. To explore the mechanism of signal recognition and transduction in NifL, we determined the crystal structure of the FAD-bound PAS domain of NifL from Azotobacter vinelandii to 1.04 Å resolution. The structure reveals a novel cavity within the PAS domain which contains two water molecules directly coordinated to the FAD. This cavity is connected to solvent by multiple access channels which may facilitate the oxidation of the FAD by molecular oxygen and the release of hydrogen peroxide. The structure contains a dimer of the NifL PAS domain that is structurally very similar to those described in other crystal structures of PAS domains and identifies a conserved dimerization motif. An N-terminal amphipathic helix constitutes part of the dimerization interface, and similar N-terminal helices are identified in other PAS domain proteins. The structure suggests a model for redox-mediated signaling in which a conformational change is initiated by redox-dependent changes in protonation at the N5 atom of FAD that lead to reorganization of hydrogen bonds within the flavin binding pocket. A structural signal is subsequently transmitted to the -sheet interface between the monomers of the PAS domain
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.