Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 354934
Title Hydrometeorological application of a microwave link: 1. Evaporation
Author(s) Leijnse, H.; Uijlenhoet, R.; Stricker, J.N.M.
Source Water Resources Research 43 (2007). - ISSN 0043-1397 - 9 p.
DOI https://doi.org/10.1029/2006WR004988
Department(s) Hydrology and Quantitative Water Management
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2007
Keyword(s) flevoland field experiment - sensible heat fluxes - heterogeneous surface - refractive-index - large-aperture - scintillometers - fluctuations - absorption - momentum - basin
Abstract A method to estimate areal evaporation using a microwave link (radio wave scintillometer) in combination with an energy budget constraint is proposed. This radio wave scintillometry-energy budget method (RWS-EBM) is evaluated for its applicability in different meteorological conditions and for its sensitivity to various variables (the structure parameter of the refractive index of air C n 2, the total available energy R n - G, the wind velocity u, the effective average vegetation height h 0, and the correlation coefficient between the temperature and humidity fluctuations r TQ ). The method is shown to be best suited for use in wet to moderately dry conditions, where the latent heat flux is at least a third of the total available energy (i.e., Bowen ratio =2). It is important to accurately measure the total available energy and the wind velocity as the RWS-EBM is most sensitive to these variables. The Flevoland field experiment has provided the data, obtained with a 27-GHz radio wave scintillometer (over 2.2 km), a large-aperture scintillometer (also 2.2 km), and four eddy covariance systems, which are used to test the RWS-EBM. Comparing 92 daytime measurements (30-min intervals) of the evaporation estimated using the RWS-EBM to that determined in alternative manners (eddy covariance and two-wavelength scintillometry) leads to the conclusion that the method provides consistent estimates (coefficient of determination r 2 = 0.85 in both cases) under relatively wet conditions.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.