Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 359257
Title An individual-based approach to model spatial population dynamics of invertebrates in aquatic ecosystems after pesticide contamination
Author(s) Brink, P.J. van den; Verboom, J.; Baveco, J.M.; Heimbach, F.
Source Environmental Toxicology and Chemistry 26 (2007)10. - ISSN 0730-7268 - p. 2226 - 2236.
Department(s) Alterra - Centre for Water and Climate
Aquatic Ecology and Water Quality Management
Landscape Centre
Publication type Refereed Article in a scientific journal
Publication year 2007
Keyword(s) isopod asellus-aquaticus - life-history - crustacea - growth - stream - water - lake
Abstract In the present study we present a population model (Metapopulation model for Assessing Spatial and Temporal Effects of Pesticides [MASTEP]) describing the effects on and recovery of the waterlouse Asellus aquaticus after exposure to a fast-acting, nonpersistent insecticide as a result of spray drift in pond, ditch, and stream scenarios. The model used the spatial and temporal distribution of the exposure in different treatment conditions as an input parameter. A dose¿response relation derived from a hypothetical mesocosm study was used to link the exposure with the effects. The modeled landscape was represented as a lattice of 1- by 1-m cells. The model included processes of mortality of A. aquaticus, life history, random walk between cells, density dependence of population regulation, and, in the case of the stream scenario, medium-distance drift of A. aquaticus due to flow. All parameter estimates were based on expert judgment and the results of a thorough review of published information on the ecology of A. aquaticus. In the treated part of the water body, the ditch scenario proved to be the worst-case situation, due to the absence of drift of A. aquaticus. Effects in the pond scenario were smaller because the pond was exposed from one side, allowing migration from the other, less contaminated side. The results of the stream scenario showed the importance of including drift for the population recovery in the 100-m stretch of the stream that was treated. It should be noted, however, that the inclusion of drift had a negligible impact on numbers in the stream as a whole (600 m).
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.