Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 362582
Title The Arabidopsis thaliana transcription factor AtMYB102 functions in defense against the insect herbivore Pieris rapae
Author(s) Vos, M. de; Denekamp, M.; Dicke, M.; Vuylsteke, M.; Loon, L.C. van; Smeekens, S.C.M.; Pieterse, C.M.J.
Source Plant Signaling & Behavior 1 (2006)6. - ISSN 1559-2316 - p. 305 - 311.
Department(s) Laboratory of Entomology
Publication type Refereed Article in a scientific journal
Publication year 2006
Abstract In Arabidopsis thaliana the R2R3-MYB transcription factor family consists of over 100 members and is implicated in many biological processes, such as plant development, metabolism, senescence, and defense. The R2R3-MYB transcription factor gene AtMYB102 has been shown to respond to salt stress, ABA, JA, and wounding, suggesting that AtMYB102 plays a role in the response of plants to dehydration after wounding. Here, we studied the role of AtMYB102 in the response of A. thaliana to feeding by larvae of the white cabbage butterfly Pieris rapae. A. thaliana reporter lines expressing GUS under control of the AtMYB102 promoter revealed that AtMYB102 is expressed locally at the feeding sites of herbivore-damaged leaves, but not systemically in uninfested plant parts. Knockout AtMYB102 transposon-insertion mutant plants (myb102) allowed a faster development of P. rapae caterpillars than wild-type Col-0 plants. Moreover, the number of caterpillars that had developed into pupae within 14 days was significantly higher on myb102, indicating that in wild-type plants AtMYB102 contributes to basal resistance against P. rapae feeding. Microarray analysis of wild-type Col-0 and AtMYB102 over-expressing 35S::MYB102 plants revealed a large number of differentially expressed genes. Besides several defense-related genes, a relatively large number of genes is associated with cell wall modifications.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.