Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 367452
Title Quasi steady-state simulation of the unsaturated zone in groundwater modeling of lowland regions
Author(s) Walsum, P.E.V. van; Groenendijk, P.
Source Vadose Zone Journal 7 (2008)2. - ISSN 1539-1663 - p. 769 - 781.
Department(s) Alterra - Centre for Water and Climate
Publication type Refereed Article in a scientific journal
Publication year 2008
Keyword(s) hydraulic conductivity - soil - flow
Abstract Well-conceived and detailed simulation of soil-moisture processes is a prerequisite for accurate watershed-scale modeling of water quantity and quality processes. For this purpose, Richards' equation (and its extensions) is the conceptually preferable option. Applying the equation on the watershed scale, however, may overstretch available computer resources. At the other extreme, methods based on lumping are oversimplified. Approaches are therefore needed that are efficient and just accurate enough, and that provide the required detail in the vertical column. We have developed a quasi-steady-state model that uses a sequence of steady-state water content profiles for performing dynamic simulations. The appropriate profiles are¿for each time level¿selected on the basis of water balances at the aggregate scale of control volumes. The groundwater coupling scheme involves an iteration cycle for the phreatic storage coefficient. In the postprocessing stage, the values of state variables obtained using the coupled model are disaggregated, thus delivering pressure heads, moisture contents, and fluxes at the detailed scale of compartments of a Richards-type model. The plausibility of the simplified approach was tested by comparing its results to those of a Richards-type model. The results appear promising for at least three-quarters of the area of the Netherlands with a shallow groundwater elevation (within 2 m of the soil surface) and a thin root zone (
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.