Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 368982
Title Calcium-induced tertiary structure modifications of endo-B-1,3-glucanase form Pyrococcus furiosus in 7.9 M guanidinium chloride
Author(s) Chiaraluce, R.; Gianese, G.; Angelaccio, S.; Florio, R.; Lieshout, J.F.T. van; Oost, J. van der; Consalvi, V.
Source Biochemical Journal 386 (2005)3. - ISSN 0264-6021 - p. 515 - 524.
DOI https://doi.org/10.1042/BJ20041137
Department(s) Microbiological Laboratory
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2005
Keyword(s) transform infrared-spectroscopy - protein secondary structure - 3-dimensional structures - ftir spectroscopy - free-energy - recognition - database - endo-beta-1,3-glucanase - intermediate - alignments
Abstract The family 16 endo-b-1,3 glucanase from the extremophilic archaeon Pyrococcus furiosus is a laminarinase, which in 7.9 M GdmCl (guanidinium chloride) maintains a significant amount of tertiary structure without any change of secondary structure. The addition of calcium to the enzyme in 7.9 M GdmCl causes significant changes to the near-UV CD and fluorescence spectra, suggesting a notable increase in the tertiary structure which leads to a state comparable, but not identical, to the native state. The capability to interact with calcium in 7.9 M GdmCl with a consistent recovery of native tertiary structure is a unique property of this extremely stable endo-b-1,3 glucanase. The effect of calcium on the thermodynamic parameters relative to the GdmCl-induced equilibrium unfolding has been analysed by CD and fluorescence spectroscopy. The interaction of calcium with the native form of the enzyme is studied by Fourier-transform infrared spectroscopy in the absorption region of carboxylate groups and by titration in the presence of a chromophoric chelator. A homology-based model of the enzyme is generated and used to predict the putative binding site(s) for calcium and the structural interactions potentially responsible for the unusual stability of this protein, in comparison with other family 16 glycoside hydrolases
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.