Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 372029
Title TransCom model simulations of hourly atmospheric CO2: Analysis of synoptic-scale variations for the period 2002-2003
Author(s) Patra, P.K.; Law, R.M.; Peters, W.; Krol, M.C.
Source Global Biogeochemical Cycles 22 (2008). - ISSN 0886-6236 - 16
DOI https://doi.org/10.1029/2007GB003081
Department(s) Meteorology and Air Quality
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2008
Keyword(s) klimaatverandering - kooldioxide - emissie - simulatiemodellen - climatic change - carbon dioxide - emission - simulation models - carbon-dioxide - transport models - tall tower - inversions - sinks - variability - delta-c-13 - europe - trends - cycle
Categories Climatic Change
Abstract The ability to reliably estimate CO2 fluxes from current in situ atmospheric CO2 measurements and future satellite CO2 measurements is dependent on transport model performance at synoptic and shorter timescales. The TransCom continuous experiment was designed to evaluate the performance of forward transport model simulations at hourly, daily, and synoptic timescales, and we focus on the latter two in this paper. Twenty-five transport models or model variants submitted hourly time series of nine predetermined tracers (seven for CO2) at 280 locations. We extracted synoptic-scale variability from daily averaged CO2 time series using a digital filter and analyzed the results by comparing them to atmospheric measurements at 35 locations. The correlations between modeled and observed synoptic CO2 variabilities were almost always largest with zero time lag and statistically significant for most models and most locations. Generally, the model results using diurnally varying land fluxes were closer to the observations compared to those obtained using monthly mean or daily average fluxes, and winter was often better simulated than summer. Model results at higher spatial resolution compared better with observations, mostly because these models were able to sample closer to the measurement site location. The amplitude and correlation of model-data variability is strongly model and season dependent. Overall similarity in modeled synoptic CO2 variability suggests that the first-order transport mechanisms are fairly well parameterized in the models, and no clear distinction was found between the meteorological analyses in capturing the synoptic-scale dynamics.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.