Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 372354
Title Shortcut model for water-balanced operation in fuel processor fuel cell systems
Author(s) Biesheuvel, P.M.; Kramer, G.J.
Source Journal of Power Sources 138 (2004)1-2. - ISSN 0378-7753 - p. 156 - 161.
DOI https://doi.org/10.1016/j.jpowsour.2004.06.045
Department(s) Physical Chemistry and Colloid Science
Publication type Refereed Article in a scientific journal
Publication year 2004
Abstract In a fuel processor, a hydrocarbon or oxygenate fuel is catalytically converted into a mixture rich in hydrogen which can be fed to a fuel cell to generate electricity. In these fuel processor fuel cell systems (FPFCs), water is recovered from the exhaust gases and recycled back into the system. We present a simple mass balance analysis based on the assumption that the off-gas leaving the system is just saturated (perfect condenser). The model results in simple expressions for the net amount of water produced, and the critical condition for water-balanced operation in FPFCs. The analysis includes the composition of the hydrocarbon or oxygenate fuel, the air-to-fuel inlet ratio, humidity, ambient temperature and pressure, and the temperature and pressure in the condenser. The analysis can be used to quickly assess under what conditions operation is critical and additional measures or alternative water recovery technologies are required. The simple analysis is in agreement with the more extensive mass balance analysis by Ahmed et al. [Water balance in a polymer electrolyte fuel cell system, J. Power Sources 112 (2002) 519¿530] and shows the same dependencies of the water balance on the H/C ratio, condenser pressure, ambient temperature, etc. The analysis shows that as long as these parameters remain invariant, the actual amount of water that is used in the system is of no importance from an overall water management perspective. For instance, high steam loads in the reformer, or in the fuel cell (e.g., in case of a polyelectrolyte membrane fuel cell) do not burden the overall water balance in the least.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.