Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 372799
Title A comparative study in modelling runoff and its components in two mountainous catchments
Author(s) Gurtz, J.; Zappa, M.; Jasper, K.; Lang, H.; Verbunt, M.; Badoux, A.; Vitvar, T.
Source Hydrological Processes 17 (2003)2. - ISSN 0885-6087 - p. 297 - 311.
Department(s) Sub-department of Water Resources
Publication type Refereed Article in a scientific journal
Publication year 2003
Abstract In mountainous catchments the quality of runoff modelling depends strongly on the assessment of the spatial differences in the generation of the various runoff components and of the flow paths as coupled with the amount and intensity of precipitation and/or the snow melting. These catchments are also suitable for the intercomparison of different kinds of hydrological models, particularly of different approaches for the simulation of runoff generation. Two differently structured catchment models were applied on the pre-alpine Rietholzbach research catchment (3·2 km2) within the period 1981-98 and on the high-alpine Dischmabach catchment (43 km2) within the period 1981-96 for the simulation of hydrological processes and of the runoff hydrographs. The models adopted are the more physically based WaSiM-ETH model, with grid-oriented computation of the water balance elements, and the rather conceptual PREVAH model, based on hydrological response units. The simulation results and the differences resulting from the application of the two models are discussed and compared with the observed catchment discharges, with measurements of evapotranspiration, soil moisture, outflow of a lysimeter, and of groundwater levels in three access tubes. The model intercomparison indicates that the two approaches for determining runoff generation with different degrees of complexity performed with similar statistical efficiency over a period longer than 15 years. The analysis of the simulated runoff components shows that the interflow is the main runoff component and that the portion of the runoff components depends strongly on the approach used. The snowmelt model component is of decisive importance in the snowmelt season and needs to take into account the role of air temperature and radiation for simulating runoff generation in a spatially distributed manner
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.