Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 37728
Title Estimation of oxygen evolution by marine phytoplankton from measurement of the efficiency of Photosystem II electron flow.
Author(s) Geel, C.; Versluis, W.; Snel, J.F.H.
Source Photosynthesis Research 51 (1997)1. - ISSN 0166-8595 - p. 61 - 70.
DOI https://doi.org/10.1023/A:1005779112140
Department(s) Laboratory of Plant Physiology
EPS
Publication type Refereed Article in a scientific journal
Publication year 1997
Abstract The relation between photosynthetic oxygen evolution and Photosystem II electron transport was investigated for the marine algae t Phaeodactylum tricornutum, Dunaliella tertiolecta, Tetraselmis sp., t Isochrysis sp. and t Rhodomonas sp.. The rate of Photosystem II electron transport was estimated from the incident photon flux density and the quantum efficiency of Photosystem II electron transport as determined by chlorophyll fluorescence. The relation between the estimated rate of Photosystem II electron transport and the rate of oxygen evolution was investigated by varying the ambient light intensity. At limiting light intensities a linear relation was found in all species. At intensities approaching light saturation, the relation was found to deviate from linearity. The slope of the line in the light-limited range is species dependent and related to differences in absorption cross-section of Photosystem II. The observed non-linearity at high irradiances is not caused by photorespiration but probably by a Mehler-type of oxygen reduction. The relationship could be modelled by including a redox-state dependent oxygen uptake. In the diatom t Phaeodactylum tricornutum, the photochemical efficiency of dark adapted open Photosystem II centers was found to be temperature-dependent with an optimum near 10°C.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.