Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 398689
Title Influence of pectin characteristics on complexation with ß-lactoglobulin
Author(s) Sperber, B.L.H.M.
Source Wageningen University. Promotor(en): Fons Voragen; Willem Norde, co-promotor(en): Henk Schols. - [S.l. : S.n. - ISBN 9789085858355 - 174
Department(s) AFSG Biobased Products
Physical Chemistry and Colloid Science
Food Chemistry Group
VLAG
Publication type Dissertation, internally prepared
Publication year 2010
Keyword(s) pectinen - bèta-lactoglobuline - ladingskenmerken - fysische eigenschappen - chemische eigenschappen - binding (scheikundig) - pectins - beta-lactoglobulin - charge characteristics - physical properties - chemical properties - bonding
Categories Chemistry of Food Components
Abstract Pectin and proteins are both common food constituents. The type of pectin that forms complexes with protein is known to be of great influence on the structure and stability of liquid foods. Therefore, the aim of this thesis is to investigate the influence of the overall charge and local charge density of pectin on the formation of soluble complexes with β-lactoglobulin (β-lg).
Combination of state diagrams and binding isotherms shows that a high local charge density of pectin is a prerequisite to form soluble complexes with β-lg at higher ionic strength. A high overall charge of pectin results in the close proximity of the GalA blocks. Therefore, β-Lg neighbours bind close together on pectin with a high overall charge, which leads to lateral repulsion and hence, maxima in the binding constant and the pH where insoluble complexes form with increasing ionic strength.
The formation of soluble complexes has an enthalpic driving force from electrostatic attraction and an entropic driving force from the release of small counterions from the electric double layer and water molecules from hydrophobic surroundings. A high local charge density, at low ionic strength results in complex formation dominated by an enthalpic driving force. A low local charge density gives a more even distribution between enthalpic and entropic contributions. An increase in ionic strength decreases the enthalpic contribution, with a relative increase in the entropic contribution, supporting the idea of water release from hydrophobic surroundings.
Adsorption from β-lg–pectin mixtures to a hydrophobic surface leads to low adsorption rates due to a low concentration of free protein. Sequential adsorption of β-lg and pectin shows that low overall charge pectin protrudes more into the solution than high overall charge pectin, resulting in a more negative ζ-potential for low overall charge pectin. After sequential adsorption, β-lg is most stable against wash-out with a terminal pectin layer.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.