Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 399823
Title Semiempirical modeling of abiotic and biotic factors controlling ecosystem respiration across eddy covariance sites
Author(s) Migliavacca, M.; Reichstein, M.; Richardson, A.D.; Colombo, R.; Sutton, M.A.; Lasslop, G.; Tomelleri, E.; Wohlfahrt, G.; Carvalhais, N.; Molen, M.K. van der
Source Global Change Biology 17 (2011)1. - ISSN 1354-1013 - p. 390 - 409.
Department(s) Meteorology and Air Quality
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) forest soil respiration - carbon-dioxide exchange - water-vapor exchange - deciduous forest - european forests - heterotrophic components - rhizosphere respiration - terrestrial ecosystems - litter decomposition - nitrogen deposition
Abstract In this study we examined ecosystem respiration (RECO) data from 104 sites belonging to FLUXNET, the global network of eddy covariance flux measurements. The goal was to identify the main factors involved in the variability of RECO: temporally and between sites as affected by climate, vegetation structure and plant functional type (PFT) (evergreen needleleaf, grasslands, etc.). We demonstrated that a model using only climate drivers as predictors of RECO failed to describe part of the temporal variability in the data and that the dependency on gross primary production (GPP) needed to be included as an additional driver of RECO. The maximum seasonal leaf area index (LAIMAX) had an additional effect that explained the spatial variability of reference respiration (the respiration at reference temperature Tref515 1C, without stimulation introduced by photosynthetic activity and without water limitations), with a statistically significant linear relationship (r250.52, Po0.001, n5104) even within each PFT. Besides LAIMAX, we found that reference respiration may be explained partially by total soil carbon content (SoilC). For undisturbed temperate and boreal forests a negative control of total nitrogen deposition (Ndepo) on reference respiration was also identified. We developed a new semiempirical model incorporating abiotic factors (climate), recent productivity (daily GPP), general site productivity and canopy structure (LAIMAX) which performed well in predicting the spatio-temporal variability of RECO, explaining 470% of the variance for most vegetation types. Exceptions include tropical and Mediterranean broadleaf forests and deciduous broadleaf forests. Part of the variability in respiration that could not be described by our model may be attributed to a series of factors, including phenology in deciduous broadleaf forests and management practices in grasslands and croplands
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.