Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 400785
Title Understanding the daily cycle of evapotranspiration: a method to quantify the influence of forcings and feedbacks
Author(s) Heerwaarden, C.C. van; Vilà-Guerau de Arellano, J.; Gounou, A.; Guichard, F.; Couvreux, F.
Source Journal of Hydrometeorology 11 (2010)6. - ISSN 1525-755X - p. 1405 - 1422.
DOI http://dx.doi.org/10.1175/2010JHM1272.1
Department(s) Meteorology and Air Quality
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2010
Keyword(s) convective boundary-layer - land-atmosphere interaction - diurnal time scales - soil-moisture - surface - model - evaporation - parameterization - entrainment - inversion
Abstract A method to analyze the daily cycle of evapotranspiration over land is presented. It quantifies the influence of external forcings, such as radiation and advection, and of internal feedbacks induced by boundary layer, surface layer, and land surface processes on evapotranspiration. It consists of a budget equation for evapotranspiration that is derived by combining a time derivative of the Penman–Monteith equation with a mixed-layer model for the convective boundary layer. Measurements and model results for days at two contrasting locations are analyzed using the method: midlatitudes (Cabauw, Netherlands) and semiarid (Niamey, Niger). The analysis shows that the time evolution of evapotranspiration is a complex interplay of forcings and feedbacks. Although evapotranspiration is initiated by radiation, it is significantly regulated by the atmospheric boundary layer and the land surface throughout the day. In both cases boundary layer feedbacks enhance the evapotranspiration up to 20 W m-2 h-1. However, in the case of Niamey this is offset by the land surface feedbacks since the soil drying reaches -30 W m-2 h-1. Remarkably, surface layer feedbacks are of negligible importance in a fully coupled system. Analysis of the boundary layer feedbacks hints at the existence of two regimes in this feedback depending on atmospheric temperature, with a gradual transition region in between the two. In the low-temperature regime specific humidity variations induced by evapotranspiration and dry-air entrainment have a strong impact on the evapotranspiration. In the high-temperature regime the impact of humidity variations is less pronounced and the effects of boundary layer feedbacks are mostly determined by temperature variations
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.