Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 401084
Title Space-time geostatistics for geography: a case study of radiation monitoring across parts of Germany
Author(s) Heuvelink, G.B.M.; Griffith, D.A.
Source Geographical Analysis 42 (2010)2. - ISSN 0016-7363 - p. 161 - 179.
DOI http://dx.doi.org/10.1111/j.1538-4632.2010.00788.x
Department(s) Soil Science Centre
Land Dynamics
PE&RC
Publication type Refereed Article in a scientific journal
Publication year 2010
Keyword(s) spatiotemporal covariance-models - optimization - assimilation - variogram
Abstract Many branches within geography deal with variables that vary not only in space but also in time. Therefore, conventional geostatistics needs to be extended with methods that estimate and quantify spatiotemporal variation and use it in spatiotemporal interpolation and stochastic simulation. This article briefly summarizes the main concepts of space–time geostatistics. Kriging in space and time can be done in much the same way as it is in a purely spatial setting. The main difficulties are in defining a realistic stochastic model that is assumed to have generated data and in characterizing and estimating the space–time correlation of that model. This article uses a model-based geostatistical approach to characterize space–time variability. The space–time variable of interest is treated as a sum of independent stationary spatial, temporal, and spatiotemporal components, which leads to a sum-metric space–time variogram model. Methods are illustrated with a case study of space–time interpolation of monthly averages of detected background radiation for a 5-year period in four German states.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.