Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 401243
Title Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems
Author(s) Vredenberg, W.J.
Source Biosystems 103 (2011)2. - ISSN 0303-2647 - p. 138 - 151.
Department(s) Laboratory of Plant Physiology
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) chlorophyll-a fluorescence - cyclic electron flow - single-turnover flash - induction kinetics - in-vivo - photosynthetic membrane - thylakoid membranes - spinach thylakoids - excitation-energy - reaction centers
Abstract In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with multi-turnover pulses (MTFs) of variable intensity and duration. These analyses have led to definition and formulation of rate equations that describe the sequence of primary linear electron transfer (LET) steps in photosystem II (PSII) and of cyclic electron transport (CET) in PSI. The model considers heterogeneity in PSII reaction centers (RCs) associated with the S-states of the OEC and incorporates in a dark-adapted state the presence of a 15–35% fraction of QB-nonreducing RCs that probably is identical with the S0 fraction. The fluorescence induction algorithm (FIA) in the 10 µs–1 s excitation time range considers a photochemical O-J-D, a photo-electrochemical J-I and an I-P phase reflecting the response of the variable fluorescence to the electric trans-thylakoid potential generated by the proton pump fuelled by CET in PSI. The photochemical phase incorporates the kinetics associated with the double reduction of the acceptor pair of pheophytin (Phe) and plastoquinone QA [PheQA] in QB nonreducing RCs and the associated doubling of the variable fluorescence, in agreement with the three-state trapping model (TSTM) of PS II. The decline in fluorescence emission during the so called SMT in the 1–100 s excitation time range, known as the Kautsky curve, is shown to be associated with a substantial decrease of CET-powered proton efflux from the stroma into the chloroplast lumen through the ATPsynthase of the photosynthetic machinery.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.