Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 402474
Title Climate change impact on a groundwater-influenced hillslope ecosystem
Author(s) Brolsma, R.J.; Vliet, M.T.H. van; Bierkens, M.F.P.
Source Water Resources Research 46 (2010). - ISSN 0043-1397 - 15 p.
Department(s) Earth System Science
Soil Science Centre
Publication type Refereed Article in a scientific journal
Publication year 2010
Keyword(s) stomatal conductance - competition model - atmospheric co2 - water-balance - soil - dynamics - vegetation - simulation - hydrology
Abstract This study investigates the effect of climate change on a groundwater-influenced ecosystem on a hill slope consisting of two vegetation types, one adapted to wet and one adapted to dry soil conditions. The individual effects of changes in precipitation, temperature, and atmospheric CO2 concentration are compared to the combined effect of these factors. Change in atmospheric conditions is based on the Netherlands. Projected climate change is obtained from an ensemble of nested global and regional climate models (GCMs and RCMs), representing the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A2 scenario for 2100. For each GCM-RCM combination, change factors were determined and transferred to a stochastic weather generator. All projections show higher temperatures and less annual precipitation. Simulations were performed using an ecohydrological model, consisting of a dynamic soil-plant-atmosphere-continuum model that is fully coupled to a variably saturated hydrological model, using the stochastic weather data as input. Model results show that increasing atmospheric CO2 concentration results in higher biomasses because of higher water use efficiency and a decrease in evaporation downslope where vegetation growth is light limited. The change in precipitation regime (drier summers, wetter winters) causes a decreased biomass of especially the dry-adapted species and increased upslope groundwater recharge, resulting in groundwater rise and an upward shift of wet-adapted vegetation. Temperature rise results in decreased biomass because respiration increases stronger than carbon assimilation, while increased transpiration causes drier soils and a prolonged period of water-limited growth. The combined effect is dominated by the increase in temperature and change in precipitation regime, causing decreased biomass throughout. Surprisingly, the effect on groundwater level depends on the degree by which precipitation distribution changes within the year, showing a drop at a small change and a rise when change is larger. This study thus shows that climate change effects on hydrology and vegetation are far from straightforward and call for fully coupled ecohydrological models and upslope-downslope interaction.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.