Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 403033
Title Combined Speciation Analysis by X-ray Absorption Near-Edge Structure Spectroscopy, Ion Chromatography, and Solid-Phase Microextraction Gas Chromatography-Mass Spectrometry To Evaluate Biotreatment of Concentrated Selenium Wastewaters
Author(s) Lenz, M.; Hullebusch, E.D. van; Farges, F.; Nikitenko, S.; Corvini, P.F.X.; Lens, P.N.L.
Source Environmental Science and Technology 45 (2011)3. - ISSN 0013-936X - p. 1067 - 1073.
Department(s) Sub-department of Environmental Technology
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) anaerobic granular sludge - reducing bacterial biofilms - agricultural drainage - waste-water - selenate - removal - bioremediation - reduction - oxyanions - sediments
Abstract In this study we evaluate the potential of anaerobic granular sludge as an inoculum for the bioremediation of selenium-contaminated waters using species-specific analytical methods. Solid species formed by microbial reduction were investigated using X-ray absorption near-edge structure (XANES) spectroscopy at the selenium K-edge. Furthermore, dissolved selenium species were specifically determined by ion chromatography (IC) and solid-phase microextraction gas chromatography-mass spectrometry (SPME-GC-MS). Least-squares linear combination of the XANES spectra for samples incubated with the highest selenate/selenite concentrations (10(-3) M) show the predominance of elemental selenium and a Se(-I) selenide, such as ferroselite, the thermodynamically most stable iron selenide. In contrast, elemental selenium and Se(-II) selenides are the main species detected at the lower selenate/selenite concentrations. In each repeated fed batch incubation, most aqueous selenite anions were converted into solid selenium species, regardless of the type of electron donor used (acetate or H(2)/CO(2)) and the selenium concentration applied. On the other hand, at higher concentrations of selenate (10(-4) and 10(-3) M), significant amounts of the oxyanion remained unconverted after consecutive incubations. SPME-GC-MS demonstrated selenium alkylation with both electron donors investigated, as dimethyl selenide (DMSe) and dimethyl diselenide (DMDSe). Selenite was even more alkylated in the presence of H(2)/CO(2) (maximum 2156 µg of Se/L of DMSe + DMDSe) as compared to acetate (maximum 50 µg of Se/L). In contrast, selenate was less alkylated using both electron donors (maximum 166 and 3 µg of Se/L, respectively). The high alkylation potential for selenite limits its bioremediation in selenium laden waters involving H(2)/CO(2) as the electron donor despite the fact that nontoxic elemental selenium and thermodynamically stable metal selenide species are formed
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.