Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 404030
Title Nitrate and (per)chlorate reduction pathways in (per)chlorate-reducing bacteria
Author(s) Oosterkamp, M.J.; Mehboob, F.; Schraa, G.; Plugge, C.M.; Stams, A.J.M.
Source Biochemical Society Transactions 39 (2011)1. - ISSN 0300-5127 - p. 230 - 235.
DOI http://dx.doi.org/10.1042/BST0390230
Department(s) Microbiological Laboratory
WIMEK
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) chlorite dismutase - pseudomonas-chloritidismutans - ideonella-dechloratans - chlorate reductase - strain gr-1 - perchlorate reductase - molybdenum cofactor - electron-acceptor - escherichia-coli - 1st step
Abstract The reduction of (per)chlorate and nitrate in (per)chlorate-reducing bacteria shows similarities and differences. (Per)chlorate reductase and nitrate reductase both belong to the type II DMSO family of enzymes and have a common bis(molybdopterin guanine dinucleotide)molybdenum cofactor. There are two types of dissimilatory nitrate reductases. With respect to their localization, (per)chlorate reductase is more similar to the dissimilatory periplasmic nitrate reductase. However, the periplasmic, unlike the membrane-bound, respiratory nitrate reductase, is not able to use chlorate. Structurally, (per)chlorate reductase is more similar to respiratory nitrate reductase, since these reductases have analogous subunits encoded by analogous genes. Both periplasmic (per)chlorate reductase and membrane-bound nitrate reductase activities are induced under anoxic conditions in the presence of (per)chlorate and nitrate respectively. During microbial (per)chlorate reduction, molecular oxygen is generated. This is not the case for nitrate reduction, although an atypical reaction in nitrite reduction linked to oxygen formation has been described recently. Microbial oxygen production during reduction of oxyanions may enhance biodegradation of pollutants under anoxic conditions
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.