Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 404268
Title Earthworm-induced N mineralization in fertilized grassland increases both N2O emission and crop-N uptake
Author(s) Lubbers, I.M.; Brussaard, L.; Otten, W.; Groenigen, J.W. van
Source European Journal of Soil Science 62 (2011)1. - ISSN 1351-0754 - p. 152 - 161.
Department(s) Chair Soil Biology and Biological Soil Quality
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) nitrous-oxide emission - organic-matter - carbon-dioxide - soil-structure - agroecosystems - fluxes - populations - invasion - habitat - forests
Abstract Earthworms can increase plant nitrogen (N) availability by stimulating mineralization of organic matter. However, recent studies show that they can also cause elevated emission of the greenhouse gas nitrous oxide (N2O). It is unclear to what extent these two effects occur in fertilized grasslands, where earthworm densities are typically greatest. The aims of this study were therefore to (i) quantify the effects of earthworm activity on N uptake and N2O emissions in fertilized grasslands and (ii) link these effects to earthworm functional groups. In a 73-day factorial mesocosm experiment, combinations of Lumbricus rubellus (Lr, epigeic), Aporrectodea longa (Al, anecic) and Aporrectodea caliginosa (Ac, endogeic) individuals were introduced into columns with grass growing on a fertilized (250 kg N ha-1) loamy soil. Introduction of Lr resulted in 50.8% (P <0.001) larger N2O emissions and 5.4% (P = 0.032) larger grass biomass. Grass-N uptake increased from 172 to 188 kg N ha-1 in the presence of Lr (P <0.001), from 176 to 183 kg N ha-1 in the presence of Ac (P = 0.001), and from 168 to 199 kg N ha-1 when all three earthworm species were present (P = 0.006). Lr increased soil NH4+-N concentrations (P = 0.010), further indicating enhanced mineralization of N caused by earthworm activity. We conclude that the previously observed beneficial effect of earthworm presence on plant-N availability has a negative side-effect: increased emissions of the mineralized N as N2O
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.