Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 404607
Title Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance
Author(s) Kindler, R.; Siemens, J.; Kaiser, K.; Moors, E.J.
Source Global Change Biology 17 (2011)2. - ISSN 1354-1013 - p. 1167 - 1185.
Department(s) CWC - Earth System Science and Climate Change
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) organic-matter - atmospheric co2 - forest floor - mineral soils - nitrogen - germany - europe - water - cycle - flux
Abstract Estimates of carbon leaching losses from different land use systems are few and their contribution to the net ecosystem carbon balance is uncertain. We investigated leaching of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and dissolved methane (CH4), at forests, grasslands, and croplands across Europe. Biogenic contributions to DIC were estimated by means of its d13C signature. Leaching of biogenic DIC was 8.3±4.9 g m-2 yr-1 for forests, 24.1±7.2 g m-2 yr-1 for grasslands, and 14.6±4.8 g m-2 yr-1 for croplands. DOC leaching equalled 3.5±1.3 g m-2 yr-1 for forests, 5.3±2.0 g m-2 yr-1 for grasslands, and 4.1±1.3 g m-2 yr-1 for croplands. The average flux of total biogenic carbon across land use systems was 19.4±4.0 g C m-2 yr-1. Production of DOC in topsoils was positively related to their C/N ratio and DOC retention in subsoils was inversely related to the ratio of organic carbon to iron plus aluminium (hydr)oxides. Partial pressures of CO2 in soil air and soil pH determined DIC concentrations and fluxes, but soil solutions were often supersaturated with DIC relative to soil air CO2. Leaching losses of biogenic carbon (DOC plus biogenic DIC) from grasslands equalled 5–98% (median: 22%) of net ecosystem exchange (NEE) plus carbon inputs with fertilization minus carbon removal with harvest. Carbon leaching increased the net losses from cropland soils by 24–105% (median: 25%). For the majority of forest sites, leaching hardly affected actual net ecosystem carbon balances because of the small solubility of CO2 in acidic forest soil solutions and large NEE. Leaching of CH4 proved to be insignificant compared with other fluxes of carbon. Overall, our results show that leaching losses are particularly important for the carbon balance of agricultural systems.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.