Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 404982
Title Metabolomics of a model fruit: tomato
Author(s) Vos, R.C.H. de; Hall, R.D.; Moing, A.
Source In: The Biology of Plant Metabolomics . Annual Plant Reviews Oxford : Blackwell/Wiley - ISBN 9781405199544 - p. 109 - 156.
DOI http://dx.doi.org/10.1002/9781444339956.ch5
Department(s) PRI BIOS Applied Metabolic Systems
Publication type Peer reviewed book chapter
Publication year 2011
Abstract Tomato has quickly become a favoured species for metabolomics research. Tomato fills a niche that cannot be occupied by Arabidopsis, particularly regarding studies on fleshy fruit. Variations in genotype and phenotype have been broadly exploited using metabolomics approaches in order to gain a better understanding of fundamental aspects of plant physiology, fruit growth and fruit development. The commercial importance of tomato as one of the world's most important and widely grownand consumed vegetables is a significant driving force behind this fruit research. Therefore, many metabolomics studies have specifically been focused on traits of importance to the food and agro-industries. Fruit quality, nutritional value as well as the influence on these traits of fruit storage, transport and processing into pasteurized and cooked products have also been subjects for extensive metabolomics analyses. These studies have already considerably expanded our knowledge, and continue to do so, concerning many aspects of the tomato fruit phenotype, both visible and chemical. Furthermore, increased knowledge of the genetics of tomato, the recently available draft of the tomato genome sequence as well as the emerging technologies for next generation sequencing, large-scale phenotyping and systems biology approaches have generated many novel research concepts that are also placing metabolomics analyses of tomatoes right at the forefront of fruit research
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.