Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 40515
Title Adsorption of cellulose derivatives on inorganic oxides.
Author(s) Hoogendam, C.W.; Derks, I.; Keizer, A. de; Cohen Stuart, M.A.; Bijsterbosch, B.H.
Source Colloids and Surfaces. A: Physicochemical and Engineering Aspects 144 (1998). - ISSN 0927-7757 - p. 245 - 258.
Department(s) Physical Chemistry and Colloid Science
Publication type Refereed Article in a scientific journal
Publication year 1998
Abstract Adsorption of hydroxyethyl cellulose (HEC) and quaternary ammonium substituted HEC (QNHEC) on silica and titanium dioxide has been investigated as a function of pH and electrolyte (NaCl) concentration. Adsorbed amounts have been determined by means of reflectometry. Adsorption of HEC on SiO2 is constant up to pH=5. At higher pH the adsorption decreases, which is most pronounced at high (0.5 mol l−1) electrolyte concentration. The thickness of the adsorbed layer, determined by dynamic light scattering, is substantial. This indicates an adsorbed layer with extended conformation having loops and (few) long tails protruding into the solution. Adsorption on TiO2 in 0.01 mol l−1 NaCl decreases monotonically with increasing pH. In 0.5 mol l−1 NaCl the adsorption is constant up to pH=10, beyond which it decreases rapidly. Mechanisms of binding to both surfaces leading to the observed adsorption behaviour are proposed. Electrostatics dominate the adsorption of QNHEC in 0.01 mol l−1 NaCl on both surfaces. The adsorbed amount increases linearly with pH up to pH=10. A decrease is observed for pH>11. The linearity is interpreted in terms of a molecular condenser which is composed of the surface layer and the polyelectrolyte in the first layer near the surface. In 0.5 mol l−1 NaCl adsorption on SiO2 is constant up to pH=5. A maximum is observed at pH=10. On TiO2 the adsorption is low.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.