Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 405824
Title Generalized functional responses for species distributions
Author(s) Matthiopoulos, J.; Hebblewhite, M.; Aarts, G.M.; Fieberg, J.
Source Ecology 92 (2011)3. - ISSN 0012-9658 - p. 583 - 589.
Department(s) IMARES Ecosystemen
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) resource selection functions - habitat selection - relating populations - logistic-regression - distribution models - availability - preference - animals - space
Abstract Researchers employing resource selection functions (RSFs) and other related methods aim to detect correlates of space-use and mitigate against detrimental environmental change. However, an empirical model fit to data from one place or time is unlikely to capture species responses under different conditions because organisms respond nonlinearly to changes in habitat availability. This phenomenon, known as a functional response in resource selection, has been debated extensively in the RSF literature but continues to be ignored by practitioners for lack of a practical treatment. We therefore extend the RSF approach to enable it to estimate generalized functional responses (GFRs) from spatial data. GFRs employ data from several sampling instances characterized by diverse profiles of habitat availability. By modeling the regression coefficients of the underlying RSF as functions of availability, GFRs can account for environmental change and thus predict population distributions in new environments. We formulate the approach as a mixed-effects model so that it is estimable by readily available statistical software. We illustrate its application using (1) simulation and (2) wolf home-range telemetry. Our results indicate that GFRs can offer considerable improvements in estimation speed and predictive ability over existing mixed-effects approaches.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.