Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 40601
Title The 'prismane' protein resolved: X-ray structure at 1.7A and multiple spectroscopy of two novel 4Fe clusters.
Author(s) Arendsen, A.F.; Hadden, J.; Card, G.; Mcalpine, A.S.; Bailey, S.; Zaitsev, V.; Duke, E.H.M.; Lindley, P.F.; Krockel, M.; Trautwein, A.X.; Feiters, M.C.; Charnock, J.M.; Garner, C.D.
Source Journal of Biological Inorganic Chemistry 3 (1998). - ISSN 0949-8257 - p. 81 - 95.
DOI http://dx.doi.org/10.1007/s007750050210
Department(s) Biochemistry
Publication type Refereed Article in a scientific journal
Publication year 1998
Abstract The three-dimensional structure of the native "putative prismane" protein from Desulfovibrio vulgaris (Hildenborough) has been solved by X-ray crystallography to a resolution of 1.72 Å. The molecule does not contain a [6Fe-6S] prismane cluster, but rather two 4Fe clusters some 12 Å apart and situated close to the interfaces formed by the three domains of the protein. Cluster 1 is a conventional [4Fe-4S] cubane bound, however, near the N-terminus by an unusual, sequential arrangement of four cysteine residues (Cys 3, 6, 15, 21). Cluster 2 is a novel 4Fe structure with two 72-sulfido bridges, two 72-oxo bridges, and a partially occupied, unidentified 72 bridge X. The protein ligands of cluster 2 are widely scattered through the second half of the sequence and include three cysteine residues (Cys 312, 434, 459), one persulfido-cysteine (Cys 406), two glutamates (Glu 268, 494), and one histidine (His 244). With this unusual mixture of bridging and external type of ligands, cluster 2 is named the "hybrid" cluster, and its asymmetric, open structure suggests that it could be the site of a catalytic activity. X-ray absorption spectroscopy at the Fe K-edge is readily interpretable in terms of the crystallographic model when allowance is made for volume contraction at 10 K; no Fe??Fe distances beyond 3.1 Å could be identified. EPR, Mössbauer and MCD spectroscopy have been used to define the oxidation states and the magnetism of the clusters in relation to the crystallographic structure. Reduced cluster 1 is a [4Fe-4S]1 cubane with S = 3/2; it is the first biological example of a "spin-admixed" iron-sulfur cluster. The hybrid cluster 2 has four oxidation states from (formally) all FeIII to three FeII plus one FeIII. The four iron ions are exchange coupled resulting in the system spins S = 0, 9/2, 0 (and 4), 1/2, respectively, for the four redox states. Resonance Raman spectroscopy suggests that the bridging ligand X which could not be identified unambiguously in the crystal structure is a solvent-exchangeable oxygen.
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.