Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 406043
Title Excitation-energy transfer dynamics of higher plant photosystem I light-harvesting complexes
Author(s) Wientjes, E.; Stokkum, I.H.M. van; Amerongen, H. van; Croce, R.
Source Biophysical Journal 100 (2011)5. - ISSN 0006-3495 - p. 1372 - 1380.
DOI https://doi.org/10.1016/j.bpj.2011.01.030
Department(s) Biophysics
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) time-resolved fluorescence - pigment-pigment interactions - far-red fluorescence - green plants - angstrom resolution - psi-lhci - antenna complexes - mutation analysis - room-temperature - proteins
Abstract Photosystem I (PSI) plays a major role in the light reactions of photosynthesis. In higher plants, PSI is composed of a core complex and four outer antennas that are assembled as two dimers, Lhca1/4 and Lhca2/3. Time-resolved fluorescence measurements on the isolated dimers show very similar kinetics. The intermonomer transfer processes are resolved using target analysis. They occur at rates similar to those observed in transfer to the PSI core, suggesting competition between the two transfer pathways. It appears that each dimer is adopting various conformations that correspond to different lifetimes and emission spectra. A special feature of the Lhca complexes is the presence of an absorption band at low energy, originating from an excitonic state of a chlorophyll dimer, mixed with a charge-transfer state. These low-energy bands have high oscillator strengths and they are superradiant in both Lhca1/4 and Lhca2/3. This challenges the view that the low-energy charge-transfer state always functions as a quencher in plant Lhc's and it also challenges previous interpretations of PSI kinetics. The very similar properties of the low-energy states of both dimers indicate that the organization of the involved chlorophylls should also be similar, in disagreement with the available structural data
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.