Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 406099
Title Quantifying the sensitivity of camera traps:an adapted distance sampling approach
Author(s) Rowcliffe, M.; Carbone, C.; Jansen, P.A.; Kays, R.W.; Kranstauber, B.
Source Methods in Ecology and Evolution 2 (2011)5. - ISSN 2041-210X - p. 464 - 476.
Department(s) Forest Ecology and Forest Management
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) neotropical forests - photographic rates - estimate densities - cryptic mammals - population - tigers - landscape - design - birds
Abstract 1. Abundance estimation is a pervasive goal in ecology. The rate of detection by motion-sensitive camera traps can, in principle, provide information on the abundance of many species of terrestrial vertebrates that are otherwise difficult to survey. The random encounter model (REM, Rowcliffe et al. 2008) provides a means estimating abundance from camera trap rate but requires camera sensitivity to be quantified. 2. Here, we develop a method to estimate the area effectively monitored by cameras, which is one of the most important codeterminants of detection rate. Our method borrows from distance sampling theory, applying detection function models to data on the position (distance and angle relative to the camera) where the animals are first detected. Testing the reliability of this approach through simulation, we find that bias depends on the effective detection angle assumed but was generally low at less than 5% for realistic angles typical of camera traps. 3. We adapted standard detection functions to allow for the possibility of smaller animals passing beneath the field of view close to the camera, resulting in reduced detection probability within that zone. Using a further simulation to test this approach, we find that detection distance can be estimated with little or no bias if detection probability is certain for at least some distance from the camera. 4. Applying this method to a 1-year camera trapping data set from Barro Colorado Island, Panama, we show that effective detection distance is related strongly positively to species body mass and weakly negatively to species average speed of movement. There was also a strong seasonal effect, with shorter detection distance during the wet season. Effective detection angle is related more weakly to species body mass, and again strongly to season, with a wider angle in the wet season. 5. This method represents an important step towards practical application of the REM, including abundance estimation for relatively small (
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.