Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 406232
Title A new method to determine the energy saving night temperature for vegetative growth of Phalaenopsis
Author(s) Pollet, B.; Kromwijk, J.A.M.; Vanhaecke, L.; Dambre, P.; Labeke, M.C.; Marcelis, L.F.M.; Steppe, K.
Source Annals of Applied Biology 158 (2011)3. - ISSN 0003-4746 - p. 331 - 345.
DOI http://dx.doi.org/10.1111/j.1744-7348.2011.00470.x
Department(s) WUR GTB Teelt & Bedrijfssystemen
Horticultural Supply Chains
WUR GTB Gewasfysiologie Management en Model
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) crassulacean acid metabolism - chlorophyll fluorescence parameters - phosphoenolpyruvate carboxylase - ananas-comosus - clusia-minor - photosynthetic efficiency - day/night temperature - cam photosynthesis - co2 concentration - heat tolerance
Abstract Knowledge of the energy saving night temperature (i.e. a relatively cool night temperature without affecting photosynthetic activity and physiology) and a better understanding of low night temperature effects on the photosynthetic physiology of Phalaenopsis would improve their production in terms of greenhouse temperature control and energy use. Therefore, Phalaenopsis‘Hercules’ was subjected to day temperatures of 27.5°C and night temperatures of 27.0°C, 24.2°C, 21.2°C, 18.3°C, 15.3°C or 12.3°C in a growth chamber. A new tool for the determination of the energy saving night temperature range was developed based on temperature response curves of leaf net CO2 exchange, chlorophyll fluorescence, organic acid content and carbohydrate concentrations. The newly developed method was validated during a complete vegetative cultivation in a greenhouse environment with eight Phalaenopsis hybrids (i.e. ‘Boston’, ‘Bristol’, ‘Chalk Dust', ‘Fire Fly’, ‘Lennestadt’, ‘Liverpool’, ‘Precious’, ‘Vivaldi’) and day/night temperature set points of 28/28°C, 29/23°C and 29/17°C. Temperature response curves revealed an overall energy saving night temperature range for nocturnal CO2 uptake, carbohydrate metabolism, organic acid accumulation and photosystem II (PSII) photochemistry of 17.1°C to 19.9°C for Phalaenopsis‘Hercules’. At the lower end of this energy saving night temperature range, a high malate-to-citrate ratio switched towards a low ratio and this transition seemed to alleviate effects of night chilling induced photoinhibition. At night temperatures of 24°C or higher, the degradation of starch, glucose and fructose indicated an increased respiratory CO2 production. During the greenhouse validation experiment, the differences between the eight Phalaenopsis hybrids with regard to their response to the warm day/cool night temperature regimes were remarkably large. In general, the day/night temperature of 29/17°C led to a significantly lower biomass accumulation and less leaves which were in addition shorter, narrower and smaller in size as compared to the day/night temperature regimes of 28/28°C and 29/23°C. During week 25 of the cultivation period, plants matured and flower initiation steeply increased for all hybrids and in each day/night temperature regime. Before week 25, early spiking was only sufficiently suppressed in the 29/23°C and 29/17°C temperature regimes for three hybrids (‘Boston’, ‘Bristol’ and ‘Lennestadt’) but not in the other five hybrids. Although a considerable biochemical flexibility was demonstrated for Phalaenopsis‘Hercules’, inhibition of flowering after exposure to a combination of warm days and cool nights appeared to be largely hybrid dependent
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.