Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 406420
Title High-flux membrane separation using fluid skimming dominated convective fluid flow
Author(s) Dinther, A.M.C. van; Schroën, C.G.P.H.; Boom, R.M.
Source Journal of Membrane Science 371 (2011)1-2. - ISSN 0376-7388 - p. 20 - 27.
DOI https://doi.org/10.1016/j.memsci.2011.01.013
Department(s) Food Process Engineering
VLAG
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) particle trajectories - spherical-particle - laminar-flow - porous wall - microfiltration - suspensions - filtration - deposition - system - mechanics
Abstract We here report on the separation of yeast cells, with micro-engineered membranes having pores that are typically five times larger than the cells. The separation is due to neither shear-induced diffusion, nor initial lift, but to an effect similar to fluid skimming. The separation performance is linked to the ratio between cross-flow and transmembrane flux, and could be captured with a dimensionless number relating those. On the basis of this dimensionless number, flux and transmission of the cells could be predicted. The mechanism rests on having a sufficiently high cross-flow velocity, such that particles are not dragged too deep in the pore, but are dragged with the cross-flow back into the feed stream. The separation factor can simply be changed by changing the ratio between crossflow velocity and transmembrane flux. Since the membranes have very large pores, fouling does not play a role. Constant high transmembrane flux values of 200–2200 L/m2 h were reached for transmembrane pressures ranging from 0.02 to 0.4 bar (typical industrial fluxes are 150 L/m2 h bar with a maximum of 2000 L/m2 h bar for short periods of time, comparable to 50–400 L/m2 h [1] and [2]). Although the effect is strongest with monodispersed pores, it will be possible to exploit the mechanism with conventional membranes. As such, it may open up a new route towards non-fouling crossflow microfiltration
Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.