Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 406423
Title Protein-Repellent Silicon Nitride Surfaces: UV-Induced Formation of Oligoethylene Oxide Monolayers
Author(s) Rosso, M.; Nguyen, A.T.; Jong, E. de; Baggerman, J.; Paulusse, J.M.J.; Giesbers, M.; Fokkink, R.G.; Norde, W.; Schroën, C.G.P.H.; Rijn, C.J.M. van; Zuilhof, H.
Source ACS Applied Materials and Interfaces 3 (2011)3. - ISSN 1944-8244 - p. 697 - 704.
Department(s) Laboratory for Organic Chemistry
AFSG Biobased Products
Physical Chemistry and Colloid Science
Food Process Engineering
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) self-assembled monolayers - transfer radical polymerization - low-temperature plasma - bovine serum-albumin - c linked monolayers - poly(ethylene glycol) - organic monolayers - molecular simulation - ultrafiltration membranes - oligo(ethylene glycol)
Abstract The grafting of polymers and oligomers of ethylene oxide onto surfaces is widely used to prevent nonspecific adsorption of biological material on sensors and membrane surfaces. In this report, we show for the first time the robust covalent attachment of short oligoethylene oxide-terminated alkenes (CH3O(CH2CH2O)3(CH2)11-(CH-CH2) [EO3] and CH3O(CH2CH2O)6(CH2)11-(CH-CH2) [EO6]) from the reaction of alkenes onto silicon-rich silicon nitride surfaces at room temperature using UV light. Reflectometry is used to monitor in situ the nonspecific adsorption of bovine serum albumin (BSA) and fibrinogen (FIB) onto oligoethylene oxide coated silicon-rich silicon nitride surfaces (EOn-SixN4, x > 3) in comparison with plasma-oxidized silicon-rich silicon nitride surfaces (SiOy-SixN4) and hexadecane-coated SixN4 surfaces (C16-SixN4). A significant reduction in protein adsorption on EOn-SixN4 surfaces was achieved, adsorption onto EO3-SixN4 and EO6-SixN4 were 0.22 mg m-2 and 0.08 mg m-2, respectively. The performance of the obtained EO3 and EO6 layers is comparable to those of similar, highly protein-repellent monolayers formed on gold and silver surfaces. EO6-SixN4 surfaces prevented significantly the adsorption of BSA (0.08 mg m-2). Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray reflectivity and static water contact angle measurements were employed to characterize the modified surfaces. In addition, the stability of EO6-SixN4 surfaces in phosphate-buffered saline solution (PBS) and alkaline condition (pH 10) was studied. Prolonged exposure of the surfaces to PBS solution for 1 week or alkaline condition for 2 h resulted in only minor degradation of the ethylene oxide moieties and no oxidation of the SixN4 substrates was observed. Highly stable antifouling coatings on SixN4 surfaces significantly broaden the application potential of silicon nitride-coated microdevices, and in particular of microfabricated filtration membranes
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.