Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 406468
Title Efficacy and mapping of resistance to Mycosphaerella graminicola in wheat
Author(s) Tabib Ghaffary, M.S.
Source University. Promotor(en): Richard Visser, co-promotor(en): Gert Kema. - S.l. : s.n. - ISBN 9789085859284 - 233
Department(s) Laboratory of Plant Breeding
Biointeracties and Plant Health
PRI BIOINT Moleculair Phytopathology
EPS-2
Publication type Dissertation, internally prepared
Publication year 2011
Keyword(s) triticum aestivum - tarwe - plantenziekteverwekkende schimmels - mycosphaerella graminicola - ziekteresistentie - genetische kartering - genetische analyse - plantenveredeling - plant-microbe interacties - wheat - plant pathogenic fungi - disease resistance - genetic mapping - genetic analysis - plant breeding - plant-microbe interactions
Categories Plant Defence, Plant Resistance / Resistance Breeding
Abstract

Wheat is the most important food and feed crop, contributing about 19% of the required human dietary energy. The annual growth rate of the global cereal production -including wheat- is below one per cent. This is due to biotic and biotic constraints – including diseases – such that production falls short of meeting future food demands. Thus more wheat should be produced and the best way to achieve that is to produce and release cultivars with better disease resistance. Septoria tritici blotch (STB) is Europe’s major foliar wheat disease and is caused by the fungus Mycosphaerella graminicola that reduces yields to at least 50% under conducive conditions. STB management relies mostly on chemical control, but the continuously increasing incidence of fungicide resistant strains in fungal populations has resulted in a growing awareness of the importance of host resistance. However, the number of identified resistance genes to STB is very low compared to the number of known resistance genes for other wheat diseases. Moreover, these genes are not very effective and therefore of limited practical value. The aim of this research was to discover new genes for resistance and to develop tools facilitating their deployment in modern breeding programs. Three new resistance genes were detected on chromosomes 3DL, 5AL and 6DS that were designated as Stb16, Stb17 and Stb18, respectively. Stb17 was only expressed in adult plants, which is new for this disease, Stb18 is effective to a limited suite of isolates, but Stb16 has an extremely broad resistance that is of great interest to the commercial breeding industry. However, the impact of an individual gene depends strongly of the genetic make-up of a cultivar. Along with improved testing protocols these results are important for the successful commercial deployment of Stb genes in European wheat breeding programs.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.