Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 406870
Title Exploring effects of rainfall intensity and duration on soil erosion at the catchment scale using openLISEM - Prado catchment, SE Spain
Author(s) Baartman, J.E.M.; Jetten, V.G.; Ritsema, C.J.; Vente, J. de
Source Hydrological Processes 26 (2012)7. - ISSN 0885-6087 - p. 1034 - 1049.
Department(s) Land Degradation and Development
Land Dynamics
SS - Soil Physics and Land Use
Publication type Refereed Article in a scientific journal
Publication year 2012
Keyword(s) saturated hydraulic conductivity - southeast spain - land-use - semiarid catchments - landscape evolution - simulation approach - ephemeral channels - surface-roughness - hillslope runoff - drainage basins
Abstract In semi-arid areas high-intensity rainfall events are often held responsible for the main part of soil erosion. Long-term landscape evolution models usually use average annual rainfall as input, making the evaluation of single events impossible. Event-based soil erosion models are better suited for this purpose, but cannot be used to simulate longer timescales and are usually applied to plots or small catchments. In this study, the openLISEM event-based erosion model was applied to the medium sized ( 50 km2) Prado catchment in SE Spain. Our aim was to (i) test the model's performance for medium sized catchments; (ii) test the ability to simulate four selected typical Mediterranean rainfall events of different magnitude, and (iii) explore the relative contribution of these different storms to soil erosion using scenarios of future climate variability. Results show that due to large differences in the hydrologic response between storms of different magnitudes, each event needed to be calibrated separately. The relation between rainfall event characteristics and the calibration factors might help in determining optimal calibration values if event characteristics are known. Calibration of the model features some drawbacks for large catchments due to spatial variability in Ksat values. Scenario calculations show that, although 50% of soil erosion occurs as a result of high frequency, low intensity rainfall events, large magnitude, low frequency events potentially contribute significantly to total soil erosion. The results illustrate the need to incorporate temporal variability in rainfall magnitude-frequency distributions in landscape evolution models.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.