Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
Record number 406900
Title Genome transcription/translation of segmented, negative-strand RNA viruses
Author(s) Geerts-Dimitriadou, C.
Source University. Promotor(en): Just Vlak, co-promotor(en): Richard Kormelink. - [s.l.] : S.n. - ISBN 9789085859314 - 151
Department(s) Laboratory of Virology
EPS
VLAG
Publication type Dissertation, internally prepared
Publication year 2011
Keyword(s) rna-virussen - tomatenbronsvlekkenvirus - genomen - transcriptie - translatie - luzernemozaïekvirus - nucleotidenvolgordes - genexpressie - genexpressieanalyse - rna viruses - tomato spotted wilt virus - genomes - transcription - translation - alfalfa mosaic virus - nucleotide sequences - gene expression - genomics
Categories Plant Viruses / Virology / Genome informatics
Abstract

The requirements for alignment of capped RNA leader sequences along the viral genome during influenza transcription initiation (“cap-snatching”) have long been an enigma. Previous work on Tomato spotted wilt virus (TSWV) transcription initiation has revealed that this virus displays a preference for leaders with increasing base complementarity to the 3'-ultimate residues of the viral RNA template. Assuming that cap-snatching is a highly conserved mechanism, it is tempting to speculate that the findings for TSWV apply to all segmented negative RNA viruses. The research in this thesis aimed to analyze whether similar cap donor requirements applied for Influenza A virus transcription initiation as compared to what has been found for TSWV. Indeed, in vitro studies demonstrated that influenza transcriptase prefers multiple base-pairing capped leaders. Additionally, the occurrence of “prime-and-realign” during influenza transcription initiation was observed, as well as internal priming at the 3'-penultimate viral residue. The in vitro findings were confirmed by similar studies performed during influenza infection of cell cultures. Whereas transcription initiation of TSWV has been relatively well studied, transcription termination has not. It is postulated that transcription termination/translation is triggered by the formation of a hairpin structure. In cell experiments support a role of the TSWV hairpin structure in translation.

Comments
There are no comments yet. You can post the first one!
Post a comment
 
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.