Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 407053
Title Lidar DEM error analyses and topographic depression identification in a hummocky landscape in the prairie region of Canada
Author(s) Li, S.; MacMillan, R.A.; Lobb, D.A.; McConkey, B.G.; Moulin, A.; Fraser, W.R.
Source Geomorphology 129 (2011)3-4. - ISSN 0169-555X - p. 263 - 275.
Department(s) International Soil Reference and Information Centre
ICSU World Data Centre for Soils
ISRIC - World Soil Information
Publication type Refereed Article in a scientific journal
Publication year 2011
Keyword(s) digital elevation models - artifact depressions - connectivity - patterns - impact - area
Abstract Topographic depressions are abundant in topographically complex landscapes. A common practice with earlier, low resolution Digital Elevation Models (DEMs) was to remove all depressions to ensure that water flowed continuously to the edge of the DEM domain. The assumption was that most depressions were created due to errors in the DEMs. This practice is no longer justified with the increasing availability of high accuracy DEMs. However, very few studies have addressed how DEM processing options such as smoothing and coarsening and setting area and depth thresholds can affect depression identification. In this study, a site located in the Prairie Region of Canada was examined. The site is a hummocky glaciated landscape with many in-field wetlands. Lidar topographic data were collected and were used to generate a 1 m by 1 m square-grid DEM. Detailed error analyses of the lidar DEM were conducted. A set of DEMs were generated after different degrees of smoothing and coarsening. FlowMapR, an established terrain analysis tool, was used to identify depressions in each DEM with various user-defined area and depth thresholds. The results were validated against a field wetland survey. We determined that the problems associated with depression identification using a lidar DEM are two-fold. On one hand, artefactual depressions created due to DEM errors need to be eliminated, for which the raw lidar DEM need to be smoothed. On the other hand, it is also desirable to remove those topographic depressions that do not function as closed basins at the spatial or temporal scale of the processes of interest. Setting area and depth thresholds appeared to be the preferred choice for this. We suggested using the un-autocorrelated lidar DEM error as the criterion for DEM smoothing and considering depression connections in the selection of area and depth thresholds. Using lidar data on a hummocky landscape with loamy soils in the Prairie Region of Canada, 10 to 20 times smoothing operations with an area threshold of 200 m2 and a depth threshold of 0.1 m were recommended as guidelines for depression identification.
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.