Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 407210
Title Estimating genomic breeding values and detecting QTL using univariate and bivariate models
Author(s) Calus, M.P.L.; Mulder, H.A.; Veerkamp, R.F.
Source In: Proceedings of the 14th European workshop on QTL mapping and marker assisted selection (QTL-MAS), Poznan, Poland, 17-18 May 2010. - - p. S5 - S5.
Event 14th QTL-MAS Workshop, 2010-05-17/2010-05-18
Department(s) LR - Backoffice
Publication type Contribution in proceedings
Publication year 2011
Abstract Background Genomic selection is particularly beneficial for difficult or expensive to measure traits. Since multi-trait selection is an important tool to deal with such cases, an important question is what the added value is of multi-trait genomic selection. Methods The simulated dataset, including a quantitative and binary trait, was analyzed with four univariate and bivariate linear models to predict breeding values for juvenile animals. Two models estimated variance components with REML using a numerator (A), or SNP based relationship matrix (G). Two SNP based Bayesian models included one (BayesA) or two distributions (BayesC) for estimated SNP effects. The bivariate BayesC model sampled QTL probabilities for each SNP conditional on both traits. Genotypes were permuted 2,000 times against phenotypes and pedigree, to obtain significance thresholds for posterior QTL probabilities. Genotypes were permuted rather than phenotypes, to retain relationships between pedigree and phenotypes, such that polygenic effects could still be estimated. Results Correlations between estimated breeding values (EBV) of different SNP based models, for juvenile animals, were greater than 0.93 (0.87) for the quantitative (binary) trait. Estimated genetic correlation was 0.71 (0.66) for model G (A). Accuracies of breeding values of SNP based models were for both traits highest for BayesC and lowest for G. Accuracies of breeding values of bivariate models were up to 0.08 higher than for univariate models. The bivariate BayesC model detected 14 out of 32 QTL for the quantitative trait, and 8 out of 22 for the binary trait. Conclusions Accuracy of EBV clearly improved for both traits using bivariate compared to univariate models. BayesC achieved highest accuracies of EBV and was also one of the methods that found most QTL. Permuting genotypes against phenotypes and pedigree in BayesC provided an effective way to derive significance thresholds for posterior QTL probabilities
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.