Staff Publications

Staff Publications

  • external user (warningwarning)
  • Log in as
  • language uk
  • About

    'Staff publications' is the digital repository of Wageningen University & Research

    'Staff publications' contains references to publications authored by Wageningen University staff from 1976 onward.

    Publications authored by the staff of the Research Institutes are available from 1995 onwards.

    Full text documents are added when available. The database is updated daily and currently holds about 240,000 items, of which 72,000 in open access.

    We have a manual that explains all the features 

Record number 407307
Title Bayesian image restoration models for combining expert knowledge on recording activity with species distribution data
Author(s) Bierman, S.M.; Butler, A.; Marion, G.; Kuhn, I.
Source Ecography 33 (2010)3. - ISSN 0906-7590 - p. 451 - 460.
Department(s) IMARES Visserij
Publication type Refereed Article in a scientific journal
Publication year 2010
Keyword(s) pseudo-absence data - biodiversity databases - plant diversity - habitat - abundance - patterns - wildlife - europe - rates - bias
Abstract Biological atlases are, for many species, the only source of information on their distribution over large geographical areas, and are widely used to inform models of the environmental distribution of species. Such data are not collected using standardized survey techniques, however, and spatial variations in coverage (the relative extent or completeness of records) may lead to variations in the probability that the species will be recorded at locations where it is present (the "recording probability"). If spatial patterns in recording probabilities are correlated with key environmental variables, then biased estimates of the relationships between environmental variables and species distributions may be obtained. We outline a general statistical framework for modelling the environmental distribution of species using, known as Bayesian Image Restoration (BIR). BIR can be used in combination with any species distribution model, but in addition allows us to account for spatial heterogeneity in recording probabilities by utilizing expert knowledge on spatial patterns in coverage. We illustrate the methodology by applying it to maps of the recorded distribution of two plant species in Germany, taken from the German atlas of vascular plants. We find that estimated spatial patterns in recording probabilities for both species are correlated with key environmental variables. Consequently, different relationships between the probability of presence of a species and environmental variables were obtained when the species distribution models were parameterised within a BIR framework. Care must be taken in the application of BIR, since the resulting inferences can depend strongly upon the modelling assumptions that are adopted. Nevertheless, we conclude that BIR has the potential to make better use of uncertain information on species distributions than conventional methods, and can be used to formally investigate the robustness of inferences on the environmental distribution of species to assumptions concerning spatial patterns in recording probabilities
There are no comments yet. You can post the first one!
Post a comment
Please log in to use this service. Login as Wageningen University & Research user or guest user in upper right hand corner of this page.